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I. Introduction 
On November 13-14, 2006, a workshop entitled “Meeting of the MINDS: Future Directions for Human 
Language Technology,” sponsored by the U.S. Government's Disruptive Technology Office (DTO), was 
held in Chantilly, VA.. A second workshop was subsequently held on February 25-26, 2007 in Marina del 
Rey, CA.. “MINDS” is an acronym for Machine Translation, Information Retrieval, Natural Language 
Processing, Data Resources, and Speech Understanding. These 5 areas were each addressed by a number 
of experienced researchers.  The goal of these working groups was to identify and discuss especially 
promising future research directions, especially those which are un(der)funded. The intent is to elicit from 
the Human Language Technology Community itself a set of well-considered directions or “Rich Areas for 
Future Research” that could lead to major paradigm shifts in the field. Each group first reviewed major 
past developments in their respective fields and the circumstances that led to their success, and then 
focused on areas they deemed especially fertile for future research. The Speech Understanding working 
group was tasked to focus specifically on speech recognition/understanding, and did not at this time 
address speech synthesis, speech-based human-computer interface, or dialogue systems. Cross-
disciplinary research areas were proposed as well as 3-5 year “Grand Challenges” to stimulate advanced 
research by dealing with realistic tasks of broad interest.  
 
This report includes the following sections: Introduction, Historically Significant Developments in 
Speech Recognition and Understanding, Grand Challenges, Rich Areas for Future Research, 
Acknowledgments, Conclusions, and References. 

II. Historically Significant Developments in Speech Recognition and 
Understanding 

Major developments in the technology of Speech Recognition and Understanding are focused in this 
report primarily over the past 35 years, a period which has witnessed this multidisciplinary field proceed 
from its infancy to its coming of age shortly before the turn of this past century. Though far from a 
“solved” problem, it now has a growing number of practical applications in many sectors.  Further 
research and development will enable increasingly more powerful systems, deployable on a world-wide 
basis. The scope of this discussion focuses primarily on issues relating to speech recognition technology, 
and does not yet address the many critical issues relating specifically to speech synthesis, dialogue, or 
human-computer interfaces.  
 
This discussion will briefly review some highlights of those developments in five areas: Infrastructure, 
Knowledge Representation, Models and Algorithms, Search, and Metadata. Broader and deeper 
discussions of these areas with citations are available from a number of excellent sources (e.g. books: 
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Furui, 2001; Gold and Morgan, 2000; Huang, Acero, and Hon, 2001; Jelinek, 1997, Jurafsky and Martin, 
2000; Lee, Soong and Paliwal, 1996; Deng and O'Shaughnessy, 2003; Lee, 1988; Rabiner and Juang, 
1993; Reddy, 1975; Stevens, 1998; and websites: IEEE History Center, Automatic Speech Synthesis and 
Recognition; Saras Institute History of Speech and Language Technology Project; Smithsonian Speech 
Synthesis History Project).   
 
1. Infrastructure:  Moore's Law, doubling the amount of computation for a given cost in every 12 - 18 
months, in conjunction with the constantly shrinking cost of memory, has been instrumental in enabling 
Speech Recognition/Understanding researchers to run increasingly complex systems in short enough time 
(e.g. meaningful experiments in a day or less) to make significant progress and improvement over the past 
three decades. 
 
The availability of common speech corpora for speech training, development, and evaluation, has been 
critical in creating systems of increasing capabilities. Speech is a highly variable signal, characterized by 
many parameters, and thus large corpora are critical in modeling it well enough for automated systems to 
achieve proficiency.  Over the years, these corpora have been created, annotated, and distributed to the 
world-wide community by the National Institute of Science and Technology (NIST), the Linguistic Data 
Consortium (LDC), and others. The character of the recorded speech has progressed from limited, 
constrained speech materials to masses of progressively more realistic, spontaneous and “found” speech.   
The development and adoption of rigorous benchmark evaluations and standards, nurtured by the 
National Institute of Science and Technology and others have been critical in developing increasingly 
powerful and capable systems. 
 
Many labs and researchers have benefited from the availability of common research tools such as HTK, 
Sphinx, CMU LM toolkit, SRILM toolkit, etc.  Extensive research support combined with workshops, 
task definitions, and system evaluations sponsored by DARPA and others have been essential to today's 
system developments. 
 
2. Knowledge Representation: Major advances in speech signal representations have included 
perceptually motivated Mel-Frequency Cepstral Coefficients (MFCC) (Krishnamurthy and Childers, 
1986), Perceptual Linear Prediction (PLP) coefficients (Hermansky, 1990) as well as Cepstral Mean 
Subtraction (CMS) (Rosenberg et al., 1994; Furui, 2001), RASTA (Hermansky and Morgan, 1994), and 
Vocal Tract Length Normalization (VTLN) (Eide, 1996). 
 
Architecturally, the most important development has been the searchable unified graph representations 
allowing multiple sources of knowledge to be incorporated in a common probabilistic framework. Non-
compositional methods include multiple speech streams, multiple probability estimators, multiple 
recognition systems combined at the hypothesis level (e.g. ROVER (Fiscus, 1997), etc.),  and multipass 
systems with increasing constraints (bigram vs. 4-gram, within word dependencies vs. cross-word, etc).  
More recently, the use of multiple algorithms, applied both in parallel and sequentially has proven 
fruitful, as have feature-based transformations such as heteroscedastic linear discriminant analysis 
(HLDA) (Kumar and Andreou, 1998), feature-space minimum phone error (fMPE) (Povey, 2005), and 
neural net-based features (Hermansky et al., 2000). 
 
3. Models and Algorithms:  The most significant paradigm shift has been the introduction of statistical 
methods, especially stochastic processing with Hidden Markov Models (HMMs) (Baker, 1975, and 
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Jelinek, 1976) in the early 1970's (Poritz, 1988).  More than 30 years later, this methodology still 
predominates. A number of models and algorithms have been efficiently incorporated within this 
framework.  The Expectation-Maximization (EM) Algorithm (Dempster, 1977) and the Forward-
Backward or Baum-Welch algorithm (Baum, 1972) have been the principal means by which the HMMs 
are trained from data.  Despite their simplicity, N-gram language models have proved remarkably 
powerful and resilient. Decision trees (Breiman, 1984) have been widely used to categorize sets of 
features, such as pronunciations from training data. Statistical discriminative training techniques are 
typically based on utilizing Maximum Mutual Information (MMI) and the minimum-error model 
parameters. Deterministic approaches include corrective training (Bahl et al, 1993) and some neural 
network techniques (Lippman, 1987; Beaufays et al., 2002). 
 
Adaptation is vital to accommodating a wide range of variable conditions for the channel, environment, 
speaker, vocabulary, domain, etc.  Popular techniques include Maximum a posteriori probability (MAP) 
estimation (Wilks, 1962; Poor, 1988; Gauvain and Lee, 1997) , Maximum Likelihood Linear Regression 
(MLLR) (Leggetter and Woodland, 1995)  and Eigenvoices (Kuhn, 1998). This can take place on the 
basis of small amounts of data from new tasks or domains for additional training material, as well as 
“one-shot” learning, or “unsupervised” training at test time. 
 
4. Search: Key decoding or search strategies, originally developed in non-speech applications, have 
focused on stack decoding (A* search) (Jelinek, 1969) and Viterbi or N-best search (Viterbi, 1967).  
Derived from communications and information theory, stack decoding was subsequently applied to 
speech recognition systems (Jelinek, 1976; Paul, 1991). Viterbi search, broadly applied  to search 
alternative hypotheses, derives from dynamic programming in the 1950's (Bellman, 1957), and 
subsequent speech applications in the 1960's and 1970's, to the 1980's  from Russia and Japan to the U.S. 
and Europe (Vintsyuk, 1968; Velichko, 1970, Sakoe and Chiba, 1971; Baker, 1975; Bridle, Brown, and 
Chamberlain, 1982, Ney, 1984; Bourlard, Kamp, Ney, and Wellekens, 1988). 
 
5. Metadata:  The automatic determination for sentence and speaker-segmentation as well as punctuation 
(Huang and Zweig, 2002) has become a key feature in some processing systems. Starting in the early 
1990's, audio indexing and mining enabled high performance automatic topic detection and tracking, as 
well as applications for language and speaker identification (Gillick et al, 1993). 

III. Grand Challenges 

Grand Challenges are ambitious but achievable 3-5 year research program initiatives that will 
significantly advance the state-of-the-art in speech recognition and understanding. Six (6) such programs 
are described below. Each proposed program has defined measurable goals and comprises a complex of 
important capabilities that will substantially advance the field and enable significant applications. These 
are rich task domains which will enable progress on multiple promising research areas at a variety of 
levels. As noted below, each of these program initiatives could also benefit from, or provide benefit to, 
multidisciplinary or cross-area research approaches.  

       
1. Everyday Audio 

“Everyday Audio” is a term that represents a large range of speech, speaker, channel, and environmental 
conditions which people typically encounter and routinely adapt to in responding and recognizing speech 
signals. Currently automatic recognition systems are challenged, and can deliver significantly degraded 
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performance, when they encounter audio signals that differ sometimes even slightly from the limited 
conditions under which they were originally developed and “trained.” 
 
This 3-5 year research area would focus on creating and developing systems that would be much more 
robust against variability and shifts in acoustic environments, reverberation, external noise sources, 
communication channels (e.g. far-field microphones, cellular phones, etc.), speaker characteristics (e.g. 
speaking style, non-native accents, emotional state, etc.), and language characteristics (e.g. 
formal/informal styles, dialects, vocabulary, topic domain, etc.). 
 
New techniques and architectures are proposed to enable exploring these critical issues in meaningful 
environments as diverse as meeting room presentations to unstructured conversations. A primary focus 
will be exploring alternatives for automatically adapting to changing conditions in multiple dimensions, 
even simultaneously.   
 
Its goal is to deliver accurate and  useful speech transcripts automatically under many more 
environments and diverse circumstances than is now possible, thereby enabling many more applications. 

 

This challenging problem can productively draw on expertise and knowledge from related disciplines 
including natural language processing, information retrieval, and cognitive science. 

2. Rapid Portability to Emerging Languages 
Today’s state-of-the-art systems deliver top performances by building complex acoustic and language 
models using a large collection of domain-specific speech and text examples. This set of language 
resources is often not readily available for rarely-seen languages that could be emerging in the horizon.  

The goal of this research program is to create rapid portability spoken language technologies. 

To prepare for rapid development of such spoken language systems a new paradigm is needed to study 
speech and acoustic units that are more language-universal than language-specific phones. Three specific 
research issues need to be addressed, namely: (1) cross-language acoustic modeling of speech and 
acoustic units for a new target language; (2) cross-lingual lexical modeling of word pronunciations for 
new language; and (3) cross-lingual language modeling. By exploring correlation between these emerging 
languages and well-studied languages, cross-language features, such as language clustering and universal 
acoustic modeling, can be utilized to facilitate rapid adaptation of acoustic and language models. 
Bootstrapping techniques are also keys to building preliminary systems from a small amount of labeled 
utterances first, using them to label more utterance examples in an unsupervised manner, incorporating 
new labeled data into the label set, and iterating to improve the systems until they reach a comparable 
performance level similar to today’s high-accuracy systems. 
 
Many of the research results here can be extended to designing machine translation, natural language 
processing and information retrieval systems for emerging languages. To anticipate this growing needs 
some language resources and infrastructures need to be established to enable the rapid portability 
exercises. Research is also needed to study the minimum amount of supervised label information required 
to bring up a reasonable system that will serve for bootstrapping purposes. 

3. Self-adaptive Language Capabilities 
State of the art systems for speech transcription, speaker verification and language identification are all 
based on statistical models estimated from labeled training data, such as transcribed speech, and from 
human-supplied knowledge, such as pronunciation dictionaries.  Such built-in knowledge often becomes 



MINDS 2006-2007 Report of the Speech Understanding Working Group 

Janet Baker, Li Deng, James Glass, Sanjeev Khudanpur, Chin-Hui Lee and Nelson Morgan Page 5 of 21 

obsolete fairly quickly after a system is deployed in a real world application, and significant and recurring 
human intervention in the form of retraining is needed to sustain the utility of the system.  This is in sharp 
contrast with the human speech facility, which is constantly updated over a lifetime, routinely acquiring 
new vocabulary items and idiomatic expressions, and experience with previously unseen non-native 
accents and regional dialects of a language.  In particular, humans exhibit a remarkable aptitude for 
learning the sublanguage of a new domain or application without explicit supervision. 

The goal of this research program is to create self-adaptive (or self-learning) speech technology. 

There is a need for learning at all levels of speech and language processing to cope with changing 
environments, non-speech sounds, speakers, pronunciations, dialects, accents, words, meanings, and 
topics, to name but a few sources of variation over the lifetime of a deployed system.  Like its human 
counterpart, the system will engage in automatic pattern discovery, active learning and adaptation.  
Research in this area must address both the learning of new models, as well as the integration of such 
models into pre-existing knowledge sources.  Thus, an important aspect of learning is being able to 
discern when something has been learned, and how to apply the result.  Learning from multiple 
concurrent modalities, e.g. new text and video, may also be necessary.  For instance, a speech recognition 
system may encounter a new proper noun in the speech, and may need to examine contemporaneous text 
with matching context to determine the spelling of the name.  Exploitation of unlabeled or partially 
labeled data will be necessary for such learning, perhaps including the automatic selection (by the system) 
of parts of the unlabeled data for manual labeling in a way that maximizes its utility. 
 
A motivation for investing in such research is the growing activity in the allied field of Machine Learning.  
Success in this endeavor will extend the lifetime of deployed systems, and directly advance our ability to 
develop speech systems in new languages and domains without onerous demands of labeled speech, by 
essentially creating systems that automatically learn and improve over time. This research will benefit 
from cross-fertilization with Natural Language Processing, Information Retrieval, and Cognitive Science. 

4. Detection of Rare, Key Events 
Current speech recognition systems have difficulty in handling unexpected – and thus often the most 
information rich – lexical items.  This is especially problematic in speech that contains interjections of 
foreign or out-of-vocabulary words, and in languages for which there is relatively little data with which to 
build the system’s vocabulary and pronunciation lexicon.  A common outcome in this situation is that 
high-value terms are overconfidently misrecognized as some other common and similar-sounding word.  
Yet, such spoken events are key to tasks such as spoken term detection and information extraction from 
speech.  Their accurate detection is therefore of vital importance. 
The goal of this program is to create systems that reliably detect when they don’ t know a (correct) word. 

A clue to the occurrence of such error events is the mismatch between an analysis of the purely sensory 
signal unencumbered by prior knowledge, such as unconstrained phone recognition, and the word- or 
phrase-level hypothesis based on higher level knowledge, often encoded in a language model.  A key 
component of this research will therefore be to develop novel confidence measures and accurate models 
of uncertainty based on the discrepancy between sensory evidence and a priori beliefs.  A natural sequel 
to detection of such events is to transcribe them phonetically when the system is confident that its word 
hypothesis is unreliable, and devise error-correction schemes. 
 
An immediate application that such detection will enable is sub-word (e.g. phonetic) indexing and search 
of speech regions where the system suspects the presence of errors.  Phonetic transcription of the error-
prone regions will also enable the development of the next generation of self-learning speech systems – 
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the system may be able to examine new texts to determine the identity of the unknown word. . This 
research has natural synergy with Natural Language Processing and Information Retrieval research. 

5. Cognition-derived Speech and Language Systems 

A key cognitive characteristic of humans is their ability to learn and adapt to new patterns, and stimuli. 
Although this behavior is very important and relatively well-understood in humans, very little of this 
knowledge has found its way into automatic speech and language systems. The focus of this 3-5 year 
project is to understand and emulate relevant human capabilities and to incorporate these strategies into 
automatic speech systems. Since it is not  possible to predict and collect separate data for any and all types 
of speech, domains, etc., it is important to enable automatic systems to learn and generalize even from 
single instances (“episodic learning”) or limited samples of data, so that new or changed signals (e.g. 
accented speech, noise adaptation, etc.) can be correctly understood. It has been well demonstrated that 
adaptation in automatic speech systems is very beneficial.  
 
An additional impetus for looking now at how the brain processes speech and language, are the dramatic 
improvements made in recent years in the field of brain and cognitive science, especially with regard to 
the cortical imaging of speech and language processing. It is now possible to follow instantaneously the 
different paths and courses of cortical excitation as a function of differing speech and language stimuli. A 
major goal  here is to enable an understanding of how significant cortical information processing 
capabilities beyond signal processing are achieved and to leverage that knowledge in our automated 
speech and language systems. The ramifications of achieving that understanding could be very far-
reaching. This research area will draw on the related disciplines of brain and cognitive science, natural 
language processing, and information retrieval.         

6. Spoken Language Comprehension (Mimicking average language skills at 1st to 3rd grade) 
Today’s state-of-the-art systems are designed to transcribe spoken utterances. To achieve a broad level of 
speech understanding capabilities, it is critical that the community explores building language 
comprehension systems that can be improved by gradual accumulation of knowledge and language skills. 
An interesting approach is to compare a system with a child at 1st to 3rd grade for listening comprehension 
skill. Just like a child learning a new subject, a system can be exposed to a wide rage of study materials in 
the learning phase. In the testing stage, the systems and the children are given the written questions first to 
get some idea what kind of information to look for in the test passages. Comprehension tests given by 
teachers can be in both oral and written forms.  

The goal of this research program is to facilitate language comprehension enabling technologies. 

It is clear such evaluations will emphasize accurate detection of information-bearing elements in speech 
rather than raw word error rate. Natural language understanding of some limited domain knowledge is 
needed. Four key research topics need be explored: (1) partial understanding of spoken and written 
materials, with a focused attention on information-bearing components; (2) sentence segmentation and 
name entry extraction from given test passages; (3) information retrieval from the knowledge sources 
acquired in the learning phase;  and (4) representation and database organization of knowledge sources.  

Collaboration between speech and language processing communities is a key driver to the success of this 
program. The outcomes of this research will provide a paradigm shift for building domain-specific 
language understanding systems, and impact the education and learning communities. 

 

IV. Rich Areas for Future Research 
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Following lengthy discussion and debate, a number of especially rich areas for future research have been 
designated. These especially fertile areas are grouped according to whether they may be considered as 
part of Infrastructure, Knowledge Representation, or Models, Algorithms, and Search.   
1. Infrastructure 

Creation of high-quality annotated corpora: The single best proven way for present state-of-the-art 
recognition systems to improve performance on a given task is to increase the amount of task-relevant 
training data from which its models are constructed. The evolution of system capabilities has progressed 
hand-in-hand with the availability and use of increasingly sizeable and complex speech corpora to capture 
the tremendous variability inherent in the speech signal to be decoded. The dividends resulting from the 
creation and availability of this data have been repeatedly demonstrated. Despite all the various speech 
databases that have been created to date, system performance consistently improves when more is 
available.  System performance with existing corpora has not yet reached an asymptote.  This situation 
clearly indicates that more data is needed for capturing crucial information in the speech signal.  This is 
especially important in increasing the facility with which we can learn, understand, and subsequently 
automatically recognize a wide variety of world languages. This capability will be a critical component in 
improving performance not only for transcription within any given language, but also for spoken 
language machine translation, cross language information retrieval, etc.   
 
We have barely scratched the surface in collecting and sampling the many kinds of speech, environments, 
and channels that people routinely recognize. Parenthetically, we observe that we currently provide to our 
automatic systems only a very small fraction of the amount of materials that humans utilize to acquire 
language.  If we want our systems to be more powerful and to understand the nature of speech itself, we 
must collect and label more of it.  Well-labeled speech corpora have been the cornerstone on which 
today's systems have been developed and evolved. The availability of common speech corpora also has 
been and continues to be the sine qua non for rigorous comparative system evaluations, and competitive 
analyses conducted by the National Institute for Science and Technology (NIST) and others. Labeling for 
most speech databases is typically at the word level. However some annotation at a finer level (e.g. 
syllables, phones, features, etc) is important in successfully understanding and interpreting speech. 
Indeed, the single most popular speech database available from the LDC is TIMIT, a very compact 
acoustic-phonetic database, created by MIT, where the speech data also contains a subword (phonetic) 
transcription. Over the years, a succession of significant speech corpora, such as Wall Street Journal, 
Switchboard, Call Home, and more recently Buckeye, have been made widely available with varying 
degrees and types of annotation. These corpora and others have fundamentally driven much of our current 
understanding and growing capabilities in speech recognition, transcription, topic spotting and tracking, 
etc. There is a serious R&D need today for understanding the basic elements of the speech signal with 
much larger representative sets of speech corpora, both in English and other world languages.  
 
In order to explore important phenomena “above the word” level, labeling also needs to be available to 
indicate emotion, dialog acts, and semantics (e.g. Framenet (Fillmore, Baker, and Sato, 2002), Propbank 
(Kingsbury and Palmer, 2002)).  Human speech understanding is predicated on these factors.  If our 
systems hope to recognize these important characteristics, there must be suitably labeled speech data on 
which to train them.  It is also likely that some new research may be required to explore and determine 
consistent conventions and practices for labeling itself, and for future development and evaluation 
methodologies to accommodate at least minor differences in labeling techniques and practices. We must 
design systems that are tolerant to labeling errors. 
High-volume data sources very different from the ones we know:  We now have some very exciting 
opportunities to collect large amounts of audio data that have not previously been available. Thanks in 
large part to the Internet, there are now readily accessible large quantities of “Everyday” speech, 
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reflecting a variety of materials and environments previously unavailable.  Some of it is of quite variable 
and often poor quality audio, such as user-posted material from YouTube (www.YouTube.com).  Better 
quality audio materials are reflected in the diverse oral histories recorded by organizations such as 
StoryCorps (www.StoryCorps.net).  Another rich source are university course lectures, seminars and 
similar material, which are progressively being put on-line. These materials all reflect a less formal, more 
spontaneous, and natural form of speech than present-day systems have typically been developed to 
recognize. Some “weak” transcripts; e.g. closed captions, subtitles, etc., are available for some of these 
audio materials. The benefits of working with materials such as this is that systems will become more 
capable as a consequence – an important development in increasing robustness and expanding the range 
of materials that can be accurately transcribed under a wide range of conditions. Much of what is learned 
here is also likely to be of benefit in transcribing casual “everyday” speech in non-English languages. 
Tools to collect and process large quantities of speech data: Over the years, the availability of both 
open source (e.g. Carnegie Mellon University Sphinx) and commercial speech tools (e.g. Entropic 
Systems/Cambridge University HTK), has been very effective in quickly bringing good quality speech 
processing capabilities to many labs and researchers.  New web-based tools could be made available to 
collect, annotate, and then process substantial quantities of speech very cost-effectively in many 
languages.  Mustering the assistance of interested individuals on the worldwide web (e.g. open source 
software, Wikipedia,) could generate substantial quantities of language resources very efficiently and 
cost-effectively. This could be especially valuable for creating significant new capabilities for resource 
“impoverished” languages. 
 
New initiatives, though seriously under-funded at present, include digital library technology aiming to 
scan huge amounts of text (e.g. the Million Book Project (Reddy et al, 2003)) and the creation of large-
scale speech corpora (e.g. the Million Hour Speech Corpus, (Baker, 2006)) aiming to collect many hours 
of speech in many world languages. If successful, these projects will make a significant impact in 
advancing the state-of-the-art in the automation of world language speech understanding and proficiency. 
These resources will also provide rich resources to enable strong research into the fundamental nature of 
speech and language itself. 
2. Knowledge Representation  

2.1 Fundamental Science of Human Speech Perception and Production 

One principal knowledge source that we can draw to benefit machine speech recognition for long-term 
research is in the area of human speech perception, understanding, and cognition. This rich knowledge 
source has its basis in both psychological and physiological processes in humans.  Physiological aspects 
of human speech perception of most interest include cortical processing in the auditory area as well as in 
the associated motor area of the brain. One important principle of auditory perception is its modular 
organization, and recent advances in functional neuro-imaging technologies provide a driving force 
motivating new studies towards developing integrated knowledge of the modularly organized auditory 
process in an end-to-end manner. Psychological aspects of human speech perception embody the essential 
psychoacoustic properties that underlie auditory masking and attention. Such key properties equip human 
listeners with the remarkable capability of coping with cocktail party effects that no current automatic 
speech recognition techniques can successfully handle.  Intensive studies are needed in order for speech 
recognition and understanding applications to reach a new level, delivering performance comparable to 
humans. 
 
Specific issues to be resolved in the study of how the human brain processes spoken (as well as written) 
language are the way human listeners adapt to non-native accents and the time course over which human 
listeners re-acquaint themselves to a language known to them. Humans have amazing capabilities to adapt 
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to non-native accents. Current ASR systems are extremely poor in this aspect, and the improvement is 
expected only after we have sufficient understanding of human speech processing mechanisms. 
 
One specific issue related to human speech perception, which is linked to human speech production, is the 
temporal span over which speech signals are represented and modeled. One prominent weakness in 
current HMMs is the handicap in representing long-span temporal dependency in the acoustic feature 
sequence of speech, which, nevertheless, is an essential property of speech dynamics in both perception 
and production. The main cause of this handicap is the conditional independence assumptions inherit in 
the HMM formalism. The HMM framework also assumes that speech can be described as a sequence of 
discrete units, usually phone(me)s. In this symbolic, invariant approach, the focus is on the 
linguistic/phonetic information, and the incoming speech signal is normalized during pre-processing in 
order to remove most of the paralinguistic information. However, human speech perception experiments 
have shown that the paralinguistic information plays a crucial role in human speech perception. 
 
Numerous approaches have been taken over the past dozen years to address the above weaknesses of 
HMMs (e.g., Ostendorf et al., 1996; Deng et al. 1994; Aradilla et al., 2005; Wachter et al., 2003, 2006; 
Deng and O’Shaughnessey, 2003; Axelrod and Maison, 2004; Glass 2003; Morgan et al., 2005). These 
approaches can be broadly classified into the following two categories. The first, parametric, structure-
based approach establishes mathematical models for stochastic trajectories/segments of speech utterances 
using various forms of parametric characterization (e.g., Ostendorf et al., 1996; Deng et al. 1994; Deng et 
al., 2003; Frankel and King, 2006). The essence of such an approach is that it exploits knowledge and 
mechanisms of human speech perception and production so as to provide the structure of the multi-tiered 
stochastic process models. These parametric models account for the observed speech trajectory data based 
on the underlying mechanisms of speech coarticulation and reduction directly relevant to human speech 
perception, and on the relationship between speaking rate variations and the corresponding changes in the 
acoustic features. 
 
The second, non-parametric and template-based approach to overcoming the HMM weaknesses involves 
direct exploitation of speech feature trajectories (i.e. “template”) in the training data without any 
modeling assumptions (Aradilla et al., 2005; Wachter et al., 2003, 2006; Axelrod and Maison, 2004). This 
newer approach is based on episodic learning as evidenced in many recent human speech perception and 
recognition experiments (Hawkins, 2003; Maier and Moore, 2005). Due to the dramatic increase of 
speech databases and computer storage capacity available for training, as well as the exponentially 
expanded computational power, non-parametric methods and episodic learning provide rich areas for 
future research (Wachter et al., 2003, 2006; Maier and Moore, 2005; Strik, 2006). The essence of the 
template-based approach is that it captures strong dynamic segmental information about speech feature 
sequences in a way complimentary to the parametric, structure-based approach. The recent Sound-to-
Sense project in Europe has been devoted to this area of research. 

2.2 From Transcription to Meaning Extraction 

Another rich area for future research is to develop machine representations of “meaning” that capture the 
communicative intent of a spoken utterance. This should augment the current “word error rate” measure 
for speech recognition performance. It is unlikely to achieve universal representations of “meaning”, but 
for specific domains of speech understanding, they should be defined in a way that is consistent with 
human judgment of meaning in spoken utterances. This new performance measure could provide 
“feedback” to the low-level components of future speech recognition systems. For example, after the 
speech recognition systems are designed with a component that represents articulation effort, then the 
degree to which the correct meaning is recognized should correlate with the tolerance of a range of the 
articulation effort. Greater accuracy of meaning understanding or more success in communicating the 
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intent from the speaker to the listener should allow the recognizer to tolerate a wider range of speaking 
efforts on the part of speaker and hence a greater degree of acoustic variability.  This meaning 
representation may also become the output of the speech system for downstream processing in some 
applications, such as speech translation, in which a verbatim transcript preserving every acoustic detail is 
neither necessary nor desirable.  

2.3 Understanding How Cortical Speech and Language Processing Works  

Major advances in high resolution imaging technologies are now enabling brain scientists to track  the 
spatial and temporal characteristics of how the brain processes speech and language (George et al, 1995; 
Dale and Halgren, 2001; Marinkovic, 2004). A combination of direct and EEG recordings with 
neuroimaging studies using fMRI, PET and MEG technologies have revealed substantial information 
about cortical processing of speech and language. Near-term, we can now  hope to gain significant 
insights into how the human brain processes this information and to try to use that  knowledge to benefit 
speech recognition models, processing and  technology. Many phenomena can now be directly and 
quantifiably observed, such as the time course and details of adaptation and facilitation, semantic 
dissonance, etc. A scientific understanding of cortical processing and adaptation could help us understand 
how our automated systems should adapt to new acoustic environments or to accented speech, or the role 
that episodic learning plays in human speech perception and word recognition.  

 
The insights from recent linguistic, phonetic, and psychological research should be used to understand the 
interaction of prior structure of speech (as the knowledge source) and the acoustic measurement of speech 
(data), and to inform and construct the automatic speech recognition models beyond the current flat-
structured HMMs in speech technology. The newly constructed models may need to exhibit similar 
behavior to that of humans when listening and responding to their native language (accented and 
unaccented) and foreign languages. Here, accented speech or foreign languages represent the situations 
where the knowledge source is weak on the part of listener. The counterpart situation where the 
information about the data or signal becomes weak is when the listeners perform speech 
recognition/understanding under adverse acoustic environments. 
 
Understanding of the interplay between these opposing situations in human speech perception will 
provide a wealth of information enabling the construction of better models (than HMMs) that reflect 
attributes of human auditory processing and the linguistic units used in human speech recognition. For 
example, to what extent may human listeners use mixed word or phrase “templates” and the constituent 
phonetic/phonological units in their memory to achieve relatively high-performance in speech recognition 
for accented speech or foreign languages (weak knowledge) and for acoustically distorted speech (weak 
observation)?  How do human listeners use episodic learning (e.g., direct memory access) and parametric 
learning related to smaller phonetic units (analogous to what we are currently using for HMMs in 
machines) in speech recognition/understanding? Answers to these questions will benefit our design of 
next-generation machine speech recognition models and algorithms. 

2.4 Heterogeneous Knowledge Sources for Automatic Speech Recognition 
Heterogeneous parallelism in both the algorithms and the computational structure will be important for 
research in the next decade.  While the incorporation of new types of multiple knowledge sources has 
been on the research agenda for decades, particularly for speech recognition, we are coming into a period 
where the resources are available to support this strategy in a much more significant way.  For instance, it 
is now possible to incorporate both larger sound units (than the typical phone or sub-phone elements) 
even for large vocabulary recognition, while still preserving the advantage of the smaller units (Wu et al 
1998); additionally, more fundamental units such as articulatory features can be considered (Sun and 
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Deng, 2002; Frankel and King, 2001). At the level of the signal processing “front end”, we no longer need 
to settle on the single best representation, as multiple representations (differentiated by differing tie scales 
or decompositions of the time-frequency plane) have been shown to be helpful (Bourlard and Dupont 
1996, Morgan et al 2005).  At the other end of the process, the incorporation of syntactic and semantic 
cues into the recognition process is still in its infancy. It is possible that deeper semantic representations 
like Propbank (Kingsbury and Palmer 2002) and Framenet (Fillmore et al 2002) will become important in 
disambiguating between similar sounding recognition hypotheses. 
 
The incorporation of multiple knowledge sources is a key part of what could also be called multi-stream 
analysis. In the cases referred to above, the streams correspond to information in quite heterogeneous 
forms.  However, the streams can consist of more homogeneous elements such as the signals from 
multiple sensors (e.g., microphone arrays) (Farrell et al 1992).  On the other hand, the streams can be 
even more heterogeneous, for instance coming from different modalities (bone-conducted vibration, 
cameras, or low-power radar) (Ng et al 2000).  In all of these cases, architectures are required that can 
aggregate all of the modules’ responses. Various approaches for this have been tried for some time, but 
we are only now beginning to tackle the task of integrating so many different kinds of sources, due to the 
emerging availability of the kind of resources required to learn how to best do the integration. 

2.5 Focusing on Information Bearing Elements of the Speech Signal 
While speech recognition is often viewed as a classification task, any real system must contend with input 
that does not correspond to any of the desired classes. These unexpected inputs can take the form of 
complete words that are not in the recognition vocabulary (including words in a foreign language), word 
fragments, environmental noises, or non-verbal vocal output (such as laughter). Thus, in addition to the 
closed set classification task, speech recognition systems must also reject sounds that do not correspond 
to members of the desired set.  Equivalently, we need to know when we are strongly confident that a word 
is known, and also know when we are not confident of a recognition result (Jiang and Huang 1998). In 
many applications, “knowing when we don’t know” could be as or even more important than just having 
a low word error rate.  Additionally, we tend to have poor performance for words that are within the 
system vocabulary, but for which there are minimal training examples. However, such low-frequency 
words frequently contain critical information (for instance if it is a named entity). Learning how to deal 
more effectively with both interfering sounds and with information-bearing sounds that are poorly 
represented in our training is a critical area for future research (Ketabdar and Hermansky 2006). 

2.6 Novel Computational Architectures for Knowledge-Rich Speech Recognition 
For decades, Moore’s law has been a dependable indicator of the increased capability for computation and 
storage in our computational systems. The resulting effects on systems for speech recognition and 
understanding have been enormous, permitting the use of larger and larger training databases and 
recognition systems, and the incorporation of more and more detailed models of spoken language. Many 
of the projections for future research in this document implicitly depend upon a continued advance in 
computational capabilities, an assumption that certainly seems justified given recent history. However, 
the fundamentals of this progression have recently changed (Asanovic et al., 2006; Olukotun 2007). As 
Intel and others have noted recently, the power density on microprocessors has increased to the point that 
higher clock rates would begin to melt the silicon die. Consequently, at this point industry development is 
now focused on implementing microprocessors on multiple cores. Dual core CPUs are now very 
common, and 4-processor and 8-processor systems are coming out. The new road maps for the 
semiconductor industry reflect this trend, and future speedups will come more from parallelism than from 
having faster individual computing elements.  For the most part, algorithm designers for speech systems 
have ignored investigation of such parallelism, since the advance of scalar capabilities has been so 
reliable. 
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Future progress in many of the directions discussed in this document will require significantly more 
computation, and consequently researchers concerned with implementation will need to consider 
parallelism explicitly in their designs. This will be a significant change from the status quo.  In particular, 
tasks such as decoding, for which extremely clever schemes to speed up single-processor performance 
have been developed, will require a complete rethinking of the algorithms (Janin 2004). 
 

3. Models, Algorithms, and Search 

3.1 Adaptation and Self-Learning in Speech Recognition System 

Learning: Speech recognition has traditionally been cast as a classification problem where spoken input 
is classified into a sequence of pre-defined categories such as words (Jelinek 1976, Rabiner and Juang, 
1993).  Speech recognizer development typically proceeds via a heavily supervised training phase that 
makes use of annotated corpora, followed by a deployment (testing) phase whereby model parameters are 
possibly adapted to the environment, speaker, or topic etc. while the overall structure remains static.  In 
other words, speech recognizers typically do not learn; they undergo supervised training, and are 
relatively static thereafter. 
 
Such an approach stands in stark contrast to human processing of speech and language where learning is 
an intrinsic capability (Bloomfield, 193, Chomsky, 1986 Lewis, 1975).  Humans are able to digest large 
amounts of unlabeled or at best lightly annotated speech (Crain, 1991; Goodluck, 1991; Jusczyk, 1997).  
From these data we are able to learn, among other things, the phonetic inventories of a language, word 
boundaries, and we can use these abilities to acquire new words and meanings (Jusczyk, 1995; Pinker, 
1994; Saffran, 2002).   In humans, learning and the application of learned knowledge are not separated – 
they are intertwined.  However, for the most part, speech recognizers are not inherently designed to learn 
from the data they are meant to classify.   
 
Research directed towards advancing learning capabilities in speech recognizers has many potential 
opportunities.  There is a need for learning at all levels of speech and language processing to cope with 
changing environments, non-speech sounds, speakers, pronunciations, dialects, accents, words, meanings, 
and topics, to name but a few sources of variation.  Research in these areas must address both the learning 
of new models, as well as the integration of such models into pre-existing knowledge sources.  Thus, an 
important aspect of learning is being able to discern when something has been learned, and how to apply 
the result. 
 
There are many degrees of learning ranging from “one shot” methods, to learning from small amounts of 
data, to learning from partially, poorly labeled or even un-annotated data (Pereira 1992).  Research in this 
latter area would enable systems to benefit from the enormous quantities of data becoming available on-
line and could reduce the expense and delay associated with the current dependency on high-quality 
annotations for training.  This is especially true for languages for which there are little or no existing large 
annotated corpora.  Finally, research directed towards self-learning, such as unsupervised pattern 
discovery methods, could ultimately prove useful for the general problem of language acquisition – a 
long-standing “grand challenge” problem in the research community. 
Generalization:  Over the past three decades, the speech community has developed and refined an 
experimental methodology that has helped to foster steady improvements in speech technology.  The 
approach that has worked well, and been adopted in other research communities, is to develop shared 
corpora, software tools, and guidelines that can be used to reduce differences between experimental 
setups down to the basic algorithms, so that it becomes easier to quantify fundamental improvements.   
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Typically, these corpora are focused on a particular task.  As speech technology has become more 
sophisticated, the scope and difficulty of these tasks has continually increased: from isolated words to 
continuous speech, from speaker-dependent to independent, from read to spontaneous speech, from clean 
to noisy, from utterance to content-based etc. 
Although the complexity of such corpora has continually increased, one common property of such tasks is 
that they typically have a training partition that is quite similar in nature to the test data.   Indeed, 
obtaining large quantities of training data that is closely matched to the test is perhaps the single most 
reliable method to improve speech recognition performance.  This strategy is quite different from the 
human experience however.  For our entire lives, we are exposed to all kinds of speech data from 
uncontrolled environments, speakers, and topics, (i.e., “every day” speech).  Despite this variation in our 
own personal training data we are all able to create internal models of speech and language that are 
remarkably adept at dealing with variation in the speech chain.   This ability to generalize is a key aspect 
of human speech processing that has not yet found its way into modern speech recognizers.   Research on 
this topic should produce technology that will operate more effectively in novel circumstances, and that 
can generalize better from smaller amounts of data.  Examples include moving from one acoustic 
environment to another, different tasks, languages etc.  One way to support research in this area would be 
to create a large corpus of “every day” speech, and a variety of test sets drawn from different conditions.  
Another research area could explore how well information gleaned from large resource languages and/or 
domains generalize to smaller resource languages and domains. 
Machine Learning: This is an exciting time in the machine learning community.  Many new machine-
learning algorithms are being explored and are achieving impressive results on a wide variety of tasks.  
Recent examples include graphical models, conditional random fields, (partially observable) Markov 
decision processes, reinforcement-based learning and discriminative methods such as large-margin or log-
linear (max entropy) models.  Recent developments in effective training of these models make them 
worthy of further exploration.  The speech community would do well to explore common ground with the 
machine learning community in these areas. 
Language Acquisition:  The acquisition of spoken language capability by machine through unsupervised 
or lightly-supervised human intervention remains one of the “grand challenges” of artificial intelligence.  
While the amount of innate language ability possessed by humans is open to debate (Bloomfield, 1933; 
Chomsky, 1986; Lewis,1975), the degree of variation in languages across different cultures indicates that 
linguistic knowledge itself is acquired through interaction with and exposure to spoken language 
(Jusczyk, 1995; Pinker, 1994; Saffran, 2002) .   Although there has been some research in unsupervised 
acquisition of phones, words, and grammars (Clark,  2001; Brill, 1993; Solan, 2004; Klein, 2005; de 
Marcken, 2001; Brent, 1999; Park, 2006; Venkataraman, 2001),there remains much opportunity for 
research in pattern discovery, generalization, and active learning.   
 
A research program in language acquisition could have many quantifiable components, based on either 
speech or text-based inputs.  Particular opportunities exist where natural parallel (e.g., multilingual) or 
multimodal (e.g., audio-visual) corpora exist since alternative communication channels provide additional 
sources of constraint (Roy, 2002).   

3.2 Robustness and Context-Awareness in Acoustic Models for Speech Recognition 

Probabilistic models, with parameters estimated from sample speech data, pervade state-of-the-art speech 
technology, including automatic speech recognition (ASR), language identification (LID) and speaker 
verification (Jelinek, 1997; Zissman, 1996; O'Shaugnessy, 1986). The models seek to recover linguistic 
information, such as the words uttered, the language spoken or the identity of the speaker, from the 
received signal. Many factors unrelated to the information being sought by the models also significantly 
influence the signal presented to the system. 
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The acoustic environment of the speaker (e.g. background noise, reverberation, overlapping speech), and 
the channel through which the speech is acquired (e.g. cellular, land-line, VoIP; call-to-call variability). 

The acoustic environment in which the speech is captured and the communication channel through 
which the speech signal is transmitted prior to its processing represent significant causes of harmful 
variability that is responsible for drastic degradation of system performance. Existing techniques such 
as Wiener filtering  and cepstral mean subtraction (Rosenberg, et al, 1994) remove variability caused 
by additive noise or linear distortions, while methods such as RASTA (Hermansky and Morgan, 
1994) compensate for slowly varying linear channels. However, more complex channel distortions 
such as reverberation or variable noise (along with the Lombard effect) present a significant 
challenge. 

Speaker characteristics (e.g. age, nonnative accent) and speaking style (e.g. speech-rate, spontaneity of 
speech, emotional state of the speaker). 

It is well known that speech characteristics vary widely among speakers due to many factors, 
including speaker physiology, speaker style, and accents – both regional and non-native. The primary 
method currently used for making ASR systems more robust to variations in speaker characteristics is 
to include a wide range of speakers in the training.  Speaker adaptation mildly alleviates problems 
with new speakers within the “span” of known speaker/speech types, but fail for new types. 
Current ASR systems assume a pronunciation lexicon that models native speakers of a language and, 
furthermore, train on large amounts of speech data from various native speakers of the language.  A 
number of modeling approaches have been explored in modeling accented speech, including explicit 
modeling of accented speech, adaptation of native acoustic models via accented speech data,  
(Leggetter and Woodland, 1994; Gauvain and Lee, 1994) and hybrid systems that combine these two 
approaches (Wang et al, 2003).  Pronunciation variants have also been tried in the lexicon to 
accommodate accented speech (Humphries et al, 1996).  Except for small gains, the problem is 
largely unsolved. 
Similarly, some progress has been made for automatically detecting speaking rate from the speech 
signal (Morgan and Fosler-Lussier, 1998), but such knowledge is not exploited in the ASR system, 
mainly due to the lack of any explicit mechanism to model speaking rate in the recognition process. 

Language characteristics (e.g. sublanguage or dialect, vocabulary, genre or topic of conversation). 

Many important aspects of speaker variability have to do with nonstandard dialects. Dialectal 
differences in a language can occur in all linguistic aspects:  lexicon, grammar  (syntax and 
morphology), and phonology.  This is particularly damaging in languages like Arabic, where the 
spoken dialects differ from the standard form dramatically (Kirchoff et al, 2003). 
The vocabulary and language-use in an ASR task change significantly from task to task, necessitating 
estimation of new language models for each case.  A primary reason language models in current ASR 
systems are not portable across tasks even within the same language or dialect is that they lack 
linguistic sophistication – they cannot consistently distinguish meaningful sentences from 
meaningless ones, nor grammatical from ungrammatical ones.  Discourse structure is not considered 
either, merely the local collocation of words. 
Another reason why language model adaptation to new domains and genre is very data intensive is 
the “nonparametric” nature of the current models.  When the genre changes, each vocabulary-sized 
conditional probability distribution in the model must be re-estimated essentially independently of all 
the others. Several contexts may share a “backing-off” or lower-order distribution, but even those in 
turn need to be re-estimated mutually independently, and so on. 

 
With a few, exceptions such as vocal tract length normalization (VTLN) (Cohen et al, 1995) and cepstral 
mean subtraction (CMS) (Rosenberg et al, 1994) models used in today’s speech systems have few explicit 
mechanisms to accommodate most of the uninformative causes of variability listed above.  The stochastic 
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components of the model, usually Gaussian mixtures, are instead burdened with implicitly modeling the 
variability in a frame-by-frame manner.  Consequently, when the speech presented to a system deviates 
along one of these axes from the speech used for parameter estimation, predictions by the models become 
highly suspect.  Performance of the technology degrades catastrophically even when the deviations are 
such that the intended human listener exhibits little or no difficulty in extracting the same information. 
 
3.3 Towards Robust Speech Recognition in Everyday Environments 

Developing robust speech recognition requires going away from the matched training and test paradigm 
along one or more of the axes mentioned above.  To do so, a thorough understanding of the underlying 
causes of variability in speech and, subsequently, accurate and parsimonious parameterization of such 
understanding in the models, will be needed.  The following issues, however, transcend specific 
methodologies and will play a key role in any solution in the future. 
1. A large corpus of diverse speech will have to be compiled containing speech that carries information 

of the kind targeted for extraction by the technology, and exhibits large (but calibrated) extraneous 
deviations of the kind against which robustness is sought, such as a diverse speaker population with 
varying degrees of nonnative accents or different local dialects, widely varying channels and acoustic 
environments, diverse genre, etc.  Such a corpus will be needed to construct several training/test 
partitions such that unseen conditions of various kinds are represented. 

2. Multi-stream and multiple-module strategies will have to be developed.  Any robust method will have 
to identify reliable elements of the speech spectrum in a data driven manner by employing an entire 
ensemble of analyses, and using the analysis that happens to be the most reliable in that instance.  A 
multiple-module approach will also entail a new search strategy that treats the reliability of a module 
or stream in any instance as another hidden variable over which to optimize, and seeks the most likely 
hypothesis over all configurations of these hidden variables. 

3. New robust training methods for estimating models from diverse (labeled) data will be required.  To 
adequately train a model from diverse data, either the data will have to be normalized to reduce 
extraneous variability or training-condition-adaptive transformations will have to be estimated jointly 
with a condition-independent model à la speaker adaptive training (SAT) (Anastasakos, 1997)�of 
acoustic models in ASR. 

4. Detailed unsupervised adaptation will become even more important in unseen test conditions than it is 
today.  In case of adaptive model transformations, a hierarchical parameterization of the transforms 
will have to be developed, e.g. from parsimonious ones like VTLN or CMS, through multi-class 
MLLR, to a detailed transformation of every Gaussian density, to permit both robust transform 
estimation during training and unsupervised transform estimation from test data. 

5. Exploitation of unlabeled or partially labeled data will be necessary to train the models, and to 
automatically select parts of the unlabeled data for manual labeling in a way that maximizes its utility.  
This need is partly related to the abovementioned compilation of diverse training data.  The range of 
possible combinations of channel, speaker, environment, speaking style and domain is so large that it 
is unrealistic to expect transcribed or labeled speech in every configuration of conditions for training 
the models.  However, it is feasible to simply collect raw speech in all conditions of interest.  Another 
important reason for unsupervised training will be that the systems, like their human “baseline,” will 
have to undergo lifelong learning, adjusting to evolving vocabulary, channels, language use etc.   

6. Substantial linguistic knowledge will need to be injected into structural design and parameterization 
of the systems, particularly the statistical language models.  There are numerous studies indicating 
that short segments of the speech signal are locally ambiguous even to human listeners, permitting 
multiple plausible interpretations.  Linguistically guided resolution of ambiguity using cues from a 
very wide context will be needed to arrive at the “correct” interpretation.  Some form of semantics, or 
representation of meaning, in addition to syntactic structure will have to be used in the system. 
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7. All available metadata and context-dependent priors will have to be exploited by the systems. In a 
telephony application, for instance, geospatial information about the origin and destination of the call, 
known priors about the calling and called parties, and knowledge of world events that influences the 
language, vocabulary or topic of conversation will have to be used by the system. 

Discriminative criteria (Bahl et al, 1986) for parameter estimation throughout the system and multi-pass 
recognition strategies, both being pursued today, will also be vital and are worthy of continued pursuit.  
The former yield more robust models by focusing on categorization rather than description of the training 
data, while the latter lead to more robust search by quickly eliminating implausible regions of the search 
space and applying detailed models to a small set of hypotheses likely to contain the correct answer 
(Richardson et al, 1995).  
8. Language universal speech technology is a significant research challenge in its own right, with 

obvious rewards for resource “impoverished” languages, and exploiting language universals could 
yield additional robustness even in resource rich languages. 

9. Human performance on actual test data will have to be measured and used (1) for evaluation of 
robustness, giving systems greater latitude where there is genuine ambiguity and insisting on meeting 
the gold standard where there isn’t, and (2) for gaining insights from specific instances in which 
humans are robust, and those in which they are not, leading eventually to new technological solutions. 

A research program that emphasizes the accurate transcription of “everyday speech,” by which we mean 
speech acquired in realistic everyday situations with commonly used microphones from native and 
nonnative speakers in various speaking styles on a diversity of topics and tasks, will advance the 
robustness of speech recognition systems along one or more of the axes of variability mentioned above. 

3.4 Novel Search Procedures for Knowledge-Rich Speech Recognition 
As noted above, search methods that explicitly exploit parallelism may be an important research direction 
for speech understanding systems. Additionally, as innovative recognition algorithms are added, there 
will be impact on the search component. For instance, rather than the left-to-right (and sometimes right-
to-left) recognition passes that are used today, there could be advantages to either identifying islands of 
reliability or islands of uncertainty, and rely upon alternate knowledge sources only “locally” in the 
search process. The incorporation of multiple tiers of units (such as articulatory feature, sub-phone state, 
phone, syllable, word, and multi-word phrase) could have consequences for the search process. Finally, 
so-called “episodic” approaches to speech recognition are being investigated (Wachter 2003). These rely 
on examples of phrases, words or other units directly, as opposed to statistical models of speech. While 
this seems to be a throwback to the days before the prominence of Hidden Markov Models, the idea is 
gaining new prominence due to the availability of larger and larger speech databases, and thus more and 
more examples for each modeled speech unit. It could well be that an important future direction would be 
to learn how to best incorporate these approaches into a search that also uses statistical models, which 
have already proven their worth. 
  

V. Conclusions 
This report surveys historically significant events in speech recognition and understanding which have 
enabled this technology to become progressively more capable and cost-effective in a growing number of 
everyday applications. With additional research and development, significantly more valuable 
applications are within reach.  
 
A set of six ambitious, achievable, and testable Grand Challenge tasks are proposed for the next 3-5 year 
time horizon.  Successful achievement of these would lay the groundwork for bringing a number of  high-
utility applications to reality. Each of these challenge tasks should benefit and be benefited by 
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collaboration and cross-fertilization with related human language technologies, especially machine 
translation, information retrieval, and natural language processing as well as brain and cognitive science. 
Speech recognition and understanding research achievements have provably contributed major advances 
to related human language technologies as well as pattern recognition, more generally. 
 
To enable and implement these Grand Challenges, a number of especially promising research directions 
are outlined and supported in the Rich Areas for Future Research section. Though these are largely 
unfunded at present, the pursuit of these initiatives will contribute to a substantial increase in the core 
technology upon which robust future applications depend. Besides the members of the Speech 
Understanding Group itself, a number of other highly regarded speech researchers, nationally and 
internationally, have contributed both directly and indirectly to this report. A set of extensive References 
is provided as well.        
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