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Abstract 

IS_SUM is a summarizer developed at 
Institute of Software (IS) of Chinese 
Academy of Sciences for DUC 2005. We 
adopt a new way for clustering and 
summarizing documents by integrating 
Document Index Graphic (DIG) [7] with 
Lexical Chains [5]. Our results show the 
benefit of integrating DIG with Lexical 
Chains.  

1 Introduction 

IS_SUM is a summarizer we developed during our 
participation to the DUC 2005 Task. Our approach 
is based on Lexical Chains [5], which has been 
successfully used for summarization. In our 
experiments, we further integrate Document Index 
Graphics (DIG) with Lexical Chains in order to 
deal with long documents efficiently. The result 
reported in this paper is produced by the initial 
version of IS_SUM. We made some modifications 
to increase the Precision/Recall ratio of the 
summarization output afterwards.  

For the summarization task of this year, we 
made the following assumption according to the 
instructions and guidelines of DUC [1] [2], that is, 
all the documents in test data are more or less 
related to its topic without exception. The test 
documents selected by the organizer are selected 
by volunteers who produced the topic by choosing 
several documents that are highly relative to the 
topic from original 50 TREC documents. We 
believe such documents are rather related to the 
given topic. So we do not remove any documents 

that may be unrelated. 
According to this assumption, we finally 

designed our system into 4 modules in sequence: 
preprocessing, clustering, summarization, and 
compression. We use sentence extraction strategy, 
but include lexical analysis to improve the 
extraction results. After preprocessing, we 
calculate text similarity to cluster documents. 
Grouping documents related to some common 
topics into clusters can help construct lexical 
chains of the documents. Finally a compression 
module based on MMR algorithm [20] removes 
redundancy and reduces the summary to the 
required length. 

The rest of the paper is organized as: Section 
2 reviews previous work with focus on DIG and 
lexical chains. Section 3 presents our approach that 
is based on lexical chain and DIG. The system 
architecture and algorithm are show in detail in 
this section. The evaluation results of our system 
are presented in section 4. Section 5 summarizes 
the paper and shows the future work. 

2 Previous work 

Summarization is a difficult task. “This requires 
semantic analysis, discourse processing, and 
inferential interpretation. Those actions are proved 
to be highly complex by the researchers and their 
systems in the last decade. “[3].  

According to the level of semantic analysis, 
summarization methods can be roughly classified 
into the following 3 categories:  

1) Based on extraction. These methods 
analyze the sentences similarity and extract 
the most important sentences to form the 



summary. MEAD [17] is an example of this 
category. 
2) Based on simple semantic analysis such as 
Lexical Chain. We first construct a tree 
structure of the origin document, and then 
score the every chain to select the strongest 
chains as output. 
3) Based on deep semantic analysis. For 
example, Marcu [18] proposed an approach 
based on the construction of a rhetorical tree 
that uses explicit discourse markers and 
heuristic rules to decide which is the best 
rhetorical tree for a given document. 
Those 3 categories cover most of the existing 

summarizer approaches. In DUC 2005, topics are 
created to reflect explicitly the specific interests of 
a potential user in a task context and capture some 
general user/task preferences in a simple user 
profile [11]. The ‘general’ profile task requires a 
deeper analysis of the documents, while the 
‘specific’ profile task could be met by extraction. 
In order to meet the requirements of both ‘general’ 
and ‘specific’ tasks, we choose lexical chains as 
the framework for our system for its flexibility.  

Lexical Chain is first proposed by Morris and 
Hirst [4]. It has been used in a variety of IR and 
NLP applications including summarization in 
which it is used as an intermediate text 
representation. The first summarizer, which uses 
Lexical Chain, was implemented by Barzilay and 
Elhadad [5].  Lexical chain is used to weigh the 
contribution of a sentence to the main topic of a 
document. Sentences with high occurences of 
chain words are extracted and presented as a 
summary of that document. Brunn  et al. [6] 
suggests “calculating the chain scores with the 
pair-wise sum of the chain word relationship 
strengths in the chains. Then, sentences are ranked 
based on the number of ‘strong’ chain words they 
contain.” [10]  

In general, there are several steps to build a 
summary using lexical chain: 1) forming the 
chains to represent the origin document, 2) scoring 
the chains and 3) select the ‘strongest’ chains to 
form a summary.  

Barzilay [5] pointed out that one of the 
limitations of lexical chain method is its 
inefficiency to deal with long documents. In fact, 
the basic lexical chain method only takes into 

account the weight of single words rather the 
weight of both words and phrases. It is known that 
in order to better capture the structure of 
documents, the model should be able to represent 
the sentence structure in addition of words in the 
document.  

In order to get rid of the limitations we 
mentioned above, we use Document Index 
Graphics (DIG), which is proposed by Hammouda 
[15]. “The DIG model is based on graph theory 
and utilizes graph properties to match any-length 
phrase from a document to any number of 
previously seen documents in a time nearly 
proportional to the number of words of the 
document.”[15] 
 DIG is a directed graph. Its node represents a 
unique word in the document and its edge can 
represent two words in any phrases occurring in 
the document. Hammouda implemented a 
document clustering algorithm based on DIG by 
calculating document similarity using both the 
weight of phrases and words. It’s a good way to 
solve the problem of long documents. Meanwhile, 
DIG takes account the phrase weight of a 
document, so we think it may useful to get a better 
lexical chain. 

3. An approach based on lexical chain 
and DIG 

3.1. DIG representation 

We make some modifications to DIG in order to 
integrate it with lexical chain. Usually all words of 
the document are used to construct the graph nodes 
in DIG while in lexical chains only nouns are 
taken into consideration. In our system we choose 
both nouns and verbs to represent the document 
because both of them represent important 
meanings of a sentence. We call a sequence of 
nouns and verbs “phrase” in our paper. A phrase in 
this paper means a set of nouns and verbs which 
can represent the structure of a sentence. We add 
the smaller DIG into the chain set, and propose a 
new algorithm for adding entries and pruning 
chains.  

We pick up document 323 from last year’s test 
data as an example. Figure 1 shows its lexical 
chain with DIG outputted by our system. In Figure 
2, the Document’s DIG is presented and only the 
nouns and verbs whose frequency is higher than 2 



is take into account. The construction of DIG and 
lexical chains is as follows: 

Step1: Selected a set of candidate words. Both 
noun and verb words are take into account.  
Step 2: For each candidate, if noun, find the 
most relative chain; if verb, find the ‘phrase’ in 
DIG, and add the verb to the chain where the 
noun of the ‘phrase’ appears.  
Step 3: If a chain is found, insert the word into 
the chain and update the chain. 
 

Sinclair

lawsuit

rideau

wilbert

protect

work

clain

death

 
Figure 1: Lexical Chain with DIG 

 

 
Figure 2: DIG of Document 323/LA010790-0054 

3.2 System Architecture 

As we described, IS_SUM is separated into 4 
modules: Preprocessing, Clustering, 
Summarization, and Compression (Figure 3). The 
arrows show data flows in the system. Obviously, 
we could observe the intermediate output and 
adjust each module separately. 

PreProcessing

Tagging Stemming

Clustering

Document Index
Graphic

Summarizing

Build Chains Scoring

Compressing

MMR

 

Figure 3: System Architecture 

3.3 Preprocessing 

The original documents used in DUC are in XML 
format. The preprocessing module extracts the 
topics, profiles and documents’ bodies by using the 
technique of DOM. To fulfill other module’s 
requirement, we also do some extra operations 
within this module. For example, the DOM API is 
used to divide the body of the documents into 
sentences and store each sentence with its position, 
length, content and document number. Both the 
clustering and summarizing modules need Part of 
Speech (POS) tags. We choose the Java version of 
the Stanford English tagger [16] for POS-tagging. 
We also perform word stemming at the end of this 
module and calculate the word frequency before 
store each word in a big table array. Figure 4 
shows some details of operations in preprocessing 
module. 

Documents

Topic
Profile
sentence 1
sentence 2......

Document No.1

1.DOM
2.POS

3.Stem

Figure 4: Preprocessing Module 

3.4 Document Clustering 

The original documents often contain many (more 
or less important) topics. It is difficult to create a 
multi-document summary from those for 
individual documents. Therefore, many 



multi-document summarizers first cluster the 
documents in order to determine the main subjects 
among these documents. Then a summary is 
created so as to focus on the common topics of 
these documents. Many of the documents 
clustering methods today are based on VSM 
(Vector Space Model). Documents are represented 
as a feature vector of the terms (words) that appear 
in the entire document set. Each feature vector 
contains term weights of the terms appearing in 
that document. Similarity between documents can 
be calculated using one of the similarity measures, 
such as cosine or Jaccard measure.  

The similarity measure we use here is one 
adapted from Hammouda [7]. Hammond’s 
similarity measure takes account all the words 
occur in the document. However, we only use the 
noun and verb occur in the document to build our 
lexical chains. So it is inefficient to use 
Hammond’s similarity measure. We use a 
simplified version for phrase weighting according 
to both the term frequency and the phrase 
frequency (See Equation 1 below). 

Equation 1 consisted of two parts: the phrase 

weight  and term 

weight .  
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 We set α  at 0.5 empirically in our 
experiments. 1 2  is calculate by cosine 
measure where the vectors D1 and D2 are 
represented as term weights using tf*idf weighting 
scheme. Where 

( , )iSim D D

( )L p  is the length of the phrase; 
m is the number of phrases; 1if is phrase 
frequency in the iD . 

The formula calculates text similarity 
between each pair of documents in order to cluster 
them separately. Finally we separate these 
documents into small clusters in this module, and 
each cluster has its own DIG. 

 

3.5 Summarizing 

The initial version for our summarizer is based on 
the traditional chain scoring algorithm proposed by 
Hirst and St-Onge [8]. Firstly, all words that are a 
noun or a verb in WordNet are selected. Then “the 
relatedness of two noun words is determined in 
terms of the distance between their occurrences in 
document and the shape of the path that connect 
them in the WordNet thesaurus"[10]. Three 
different relationships between candidate noun 
words are defined: extra-strong, strong and 
medium-strong. Extra-strong relations are lexical 
repetitions of a noun word and strong relations are 
synonyms or near synonyms. Strong relations can 
also indicate a shared hypernym/hyponym or 
meronym/holonym, that is, one noun word is a 
parent-node or child-node of the other in the 
WordNet topology. Medium-strong relations 
follow the rule set laid out by St. Onge. [10] These 
rules govern the shape of the paths that are 
allowable in the WordNet structure. Then a greedy 
algorithm is used to disambiguate the multi-sense 
noun: a multi-sense word's sense is determined 
only by the senses of other noun words that occur 
before it in the document. In addition, when 
processing the verb word, we try to find the phrase 
that contain this verb, and then add the verb to the 
chain where the noun of the phrase appears. 
 It’s assumed that the summary should be 
written at a level of granularity that is consistent 
with the granularity requested in the user profile. 
In our system, the two types of profiles (general 
and specific) have an effect on entry selection 
during the chains building. The general profile 
does not need all the address and name entries, so 
we decrease them by a threshold. Meanwhile the 
key phrases extracted in the clustering step are 
good entry from the viewpoint of lexical cohesion. 
So a chain containing more phrases is given a 
higher score. The strongest chains of each cluster 
are selected create the summary once all the chains 
have been built. However, usually the results are 
more than 250 words, which are required by DUC. 
So the results are submitted to the compression 
module. 

3.6 Compression 

In order to minimize redundancy, we use an 



algorithm called Maximum Marginal Relevance 
(MMR) [20], which is proposed by Carbonell and 
Goldstein. It aims at having high relevance of the 
summary to the query or the document topic, while 
keeping redundancy in the summary low. A 
number of features of sentence, such as content 
words, chronological order, query/topic similarity, 
anti-redundancy and pronoun penalty, are used in 
the algorithm. Sentences chosen for inclusion in 
summary are those that are maximally similar to 
the document or query, while maximally dissimilar 
to the sentences already included in the summary.  

MMR can generate the summary with any 
desired length. We adopt sentence properties which 
has used at the first step of the summarization, 
such as, positions, words sequence and term 
frequency in MMR.  

4 Evaluation 

The official result we submitted to DUC is 
evaluated by ROUGE 1.5 [12]. Table 1 is the 
Linguistic Quality score, which is judged on five 
aspects: grammaticality, non-redundancy, 
referential clarity, focus, structure and coherence. 
They are identified by L1, L2...L5 in the table. 
 

System L1 L2 L3 L4 L5 

IS-SUM 3.96 4.76 3.24 3.49 2.67

Table1: Average Linguistic Quality 

Our system produced good performance on 
non-redundancy, but not on structure and 
coherence. This is because our method does not 
take syntax into consideration during sentence 
generation. 

Table 2 is responsiveness score of our system. 
The score is an integer between 1 and 5, with 1 
being the least responsive and 5 the most 
responsive. The bold column is the result of our 
system. 

There are 2 different profiles (General & 
Specific) in DUC 2005. All the 32 systems show a 
better performance in the latter summary (specific) 
and the average scores for the entire 25 topic 
requires general summary are all below 3. Our 
system produced almost the same performance in 
specific topic and general topic. It is due to the fact 
that our algorithm takes both terms and phrases 
into consideration.  

Number AVG IOS Number AVG IOS 

D301 3.125 3 D398 2.375 1 

D307 2.0625 3 D400 2.25 3 

D311 2.78125 2 D401 2.78125 3 

D313 3.6875 4 D404 3.46875 4 

D321 2.21875 2 D407 2 2 

D324 3 2 D408 2.3125 1 

D331 2.4375 3 D413 2.65625 2 

D332 1.65625 2 D422 2.0625 3 

D343 2.34375 3 D426 1.96875 2 

D345 2.25 2 D428 2.96875 2 

D346 2.65625 3 D431 2.375 2 

D347 2.46875 2 D434 2.3125 2 

D350 2.8125 3 D435 2.09375 2 

D354 2.46875 2 D436 2.3125 3 

D357 1.90625 2 D438 3.46875 4 

D360 1.6875 2 D442 2.40625 3 

D366 2.46875 2 D446 2.5625 2 

D370 2 2 D632 2.15625 2 

D374 2.65625 2 D633 3.1875 1 

D376 2.125 2 D654 2.40625 3 

D383 1.875 1 D671 1.8125 1 

D385 2.15625 2 D683 2 2 

D389 2.28125 1 D694 2.25 1 

D391 1.59375 1 D695 2.4375 2 

D393 2.1875 1 D699 1.96875 2 

Table2 Responsiveness 
We compare the Models of Document D438 

with the summary output by IS_SUM in order to 
see whether the similar summary would have 
similar DIG. Figure 6a is a part of DIG of the 
whole 4 models of D438 (that is the summary 
results given by human), and the right one, Figure 
6b is output of our system. The node of ‘year’ and 
‘month’ in right figure shows it has many words 
that describe time or date. This may be because it 
contains some sentence about specific event. The 
size of the in the right graphic show their weight in 
summary. For example, nodes like ‘UK’ and 
‘Tourist’ are important in the summary. Obviously 
we found such entries are also the focus of the left 
one. So we may work out a formula for using DIG 
to evaluate summary later.  Although DIG didn’t 



  
Figure 6a: Four Models’ DIG                                 Figure6b: One Peer’s DIG 

produce precise summary as we expected, it has 
shown their features by which we can enhance our 
system in the future. 

5 Conclusion and Future work 

We adopt a new way for document clustering and 
summarization based on the DIG and Lexical 
Chains. A phrase-based module is introduced into 
the traditional Lexical Chain method. The results 
show the benefit of integrating DIG with Lexical 
Chains. 

We also observed several problems of our 
method. This method can at least be improved on 
the following aspects:  

 Ambiguous Anaphora: Several heuristics have 
been proposed in the literature to address this 
problem [5]. A preferable solution would be 
introducing an anaphora resolution algorithm 
before outputting the final results.  

 Performance: Although the main system are 
written in Java with some aid tools written in 
Perl, sometimes the required memory is too 
large and the execution time is too long even 
for an experimental system.  

 Evaluation: We should try to evaluate our 
system with different methods in order to get 
the cues to increase the performance. The 
Pyramid method proposed by DUC this year is 
a good option. 
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