
IS_SUM: A Multi-Document Summarizer based on Document Index

Graphic and Lexical Chains

Quan Zhou, Le Sun Jian-Yun Nie
 Institute of Software Département d'informatique et de recherche opérationnelle

Chinese Academic of Sciences Université de Montréal
{zhouquan03, sunle}@iscas.cn {nie}@iro.umontreal.ca

Abstract

IS_SUM is a summarizer developed at
Institute of Software (IS) of Chinese
Academy of Sciences for DUC 2005. We
adopt a new way for clustering and
summarizing documents by integrating
Document Index Graphic (DIG) [7] with
Lexical Chains [5]. Our results show the
benefit of integrating DIG with Lexical
Chains.

1 Introduction

IS_SUM is a summarizer we developed during our
participation to the DUC 2005 Task. Our approach
is based on Lexical Chains [5], which has been
successfully used for summarization. In our
experiments, we further integrate Document Index
Graphics (DIG) with Lexical Chains in order to
deal with long documents efficiently. The result
reported in this paper is produced by the initial
version of IS_SUM. We made some modifications
to increase the Precision/Recall ratio of the
summarization output afterwards.

For the summarization task of this year, we
made the following assumption according to the
instructions and guidelines of DUC [1] [2], that is,
all the documents in test data are more or less
related to its topic without exception. The test
documents selected by the organizer are selected
by volunteers who produced the topic by choosing
several documents that are highly relative to the
topic from original 50 TREC documents. We
believe such documents are rather related to the
given topic. So we do not remove any documents

that may be unrelated.
According to this assumption, we finally

designed our system into 4 modules in sequence:
preprocessing, clustering, summarization, and
compression. We use sentence extraction strategy,
but include lexical analysis to improve the
extraction results. After preprocessing, we
calculate text similarity to cluster documents.
Grouping documents related to some common
topics into clusters can help construct lexical
chains of the documents. Finally a compression
module based on MMR algorithm [20] removes
redundancy and reduces the summary to the
required length.

The rest of the paper is organized as: Section
2 reviews previous work with focus on DIG and
lexical chains. Section 3 presents our approach that
is based on lexical chain and DIG. The system
architecture and algorithm are show in detail in
this section. The evaluation results of our system
are presented in section 4. Section 5 summarizes
the paper and shows the future work.

2 Previous work

Summarization is a difficult task. “This requires
semantic analysis, discourse processing, and
inferential interpretation. Those actions are proved
to be highly complex by the researchers and their
systems in the last decade. “[3].

According to the level of semantic analysis,
summarization methods can be roughly classified
into the following 3 categories:

1) Based on extraction. These methods
analyze the sentences similarity and extract
the most important sentences to form the

summary. MEAD [17] is an example of this
category.
2) Based on simple semantic analysis such as
Lexical Chain. We first construct a tree
structure of the origin document, and then
score the every chain to select the strongest
chains as output.
3) Based on deep semantic analysis. For
example, Marcu [18] proposed an approach
based on the construction of a rhetorical tree
that uses explicit discourse markers and
heuristic rules to decide which is the best
rhetorical tree for a given document.
Those 3 categories cover most of the existing

summarizer approaches. In DUC 2005, topics are
created to reflect explicitly the specific interests of
a potential user in a task context and capture some
general user/task preferences in a simple user
profile [11]. The ‘general’ profile task requires a
deeper analysis of the documents, while the
‘specific’ profile task could be met by extraction.
In order to meet the requirements of both ‘general’
and ‘specific’ tasks, we choose lexical chains as
the framework for our system for its flexibility.

Lexical Chain is first proposed by Morris and
Hirst [4]. It has been used in a variety of IR and
NLP applications including summarization in
which it is used as an intermediate text
representation. The first summarizer, which uses
Lexical Chain, was implemented by Barzilay and
Elhadad [5]. Lexical chain is used to weigh the
contribution of a sentence to the main topic of a
document. Sentences with high occurences of
chain words are extracted and presented as a
summary of that document. Brunn et al. [6]
suggests “calculating the chain scores with the
pair-wise sum of the chain word relationship
strengths in the chains. Then, sentences are ranked
based on the number of ‘strong’ chain words they
contain.” [10]

In general, there are several steps to build a
summary using lexical chain: 1) forming the
chains to represent the origin document, 2) scoring
the chains and 3) select the ‘strongest’ chains to
form a summary.

Barzilay [5] pointed out that one of the
limitations of lexical chain method is its
inefficiency to deal with long documents. In fact,
the basic lexical chain method only takes into

account the weight of single words rather the
weight of both words and phrases. It is known that
in order to better capture the structure of
documents, the model should be able to represent
the sentence structure in addition of words in the
document.

In order to get rid of the limitations we
mentioned above, we use Document Index
Graphics (DIG), which is proposed by Hammouda
[15]. “The DIG model is based on graph theory
and utilizes graph properties to match any-length
phrase from a document to any number of
previously seen documents in a time nearly
proportional to the number of words of the
document.”[15]
 DIG is a directed graph. Its node represents a
unique word in the document and its edge can
represent two words in any phrases occurring in
the document. Hammouda implemented a
document clustering algorithm based on DIG by
calculating document similarity using both the
weight of phrases and words. It’s a good way to
solve the problem of long documents. Meanwhile,
DIG takes account the phrase weight of a
document, so we think it may useful to get a better
lexical chain.

3. An approach based on lexical chain
and DIG

3.1. DIG representation

We make some modifications to DIG in order to
integrate it with lexical chain. Usually all words of
the document are used to construct the graph nodes
in DIG while in lexical chains only nouns are
taken into consideration. In our system we choose
both nouns and verbs to represent the document
because both of them represent important
meanings of a sentence. We call a sequence of
nouns and verbs “phrase” in our paper. A phrase in
this paper means a set of nouns and verbs which
can represent the structure of a sentence. We add
the smaller DIG into the chain set, and propose a
new algorithm for adding entries and pruning
chains.

We pick up document 323 from last year’s test
data as an example. Figure 1 shows its lexical
chain with DIG outputted by our system. In Figure
2, the Document’s DIG is presented and only the
nouns and verbs whose frequency is higher than 2

is take into account. The construction of DIG and
lexical chains is as follows:

Step1: Selected a set of candidate words. Both
noun and verb words are take into account.
Step 2: For each candidate, if noun, find the
most relative chain; if verb, find the ‘phrase’ in
DIG, and add the verb to the chain where the
noun of the ‘phrase’ appears.
Step 3: If a chain is found, insert the word into
the chain and update the chain.

Sinclair

lawsuit

rideau

wilbert

protect

work

clain

death

Figure 1: Lexical Chain with DIG

Figure 2: DIG of Document 323/LA010790-0054

3.2 System Architecture

As we described, IS_SUM is separated into 4
modules: Preprocessing, Clustering,
Summarization, and Compression (Figure 3). The
arrows show data flows in the system. Obviously,
we could observe the intermediate output and
adjust each module separately.

PreProcessing

Tagging Stemming

Clustering

Document Index
Graphic

Summarizing

Build Chains Scoring

Compressing

MMR

Figure 3: System Architecture

3.3 Preprocessing

The original documents used in DUC are in XML
format. The preprocessing module extracts the
topics, profiles and documents’ bodies by using the
technique of DOM. To fulfill other module’s
requirement, we also do some extra operations
within this module. For example, the DOM API is
used to divide the body of the documents into
sentences and store each sentence with its position,
length, content and document number. Both the
clustering and summarizing modules need Part of
Speech (POS) tags. We choose the Java version of
the Stanford English tagger [16] for POS-tagging.
We also perform word stemming at the end of this
module and calculate the word frequency before
store each word in a big table array. Figure 4
shows some details of operations in preprocessing
module.

Documents

Topic
Profile
sentence 1
sentence 2......

Document No.1

1.DOM
2.POS

3.Stem

Figure 4: Preprocessing Module

3.4 Document Clustering

The original documents often contain many (more
or less important) topics. It is difficult to create a
multi-document summary from those for
individual documents. Therefore, many

multi-document summarizers first cluster the
documents in order to determine the main subjects
among these documents. Then a summary is
created so as to focus on the common topics of
these documents. Many of the documents
clustering methods today are based on VSM
(Vector Space Model). Documents are represented
as a feature vector of the terms (words) that appear
in the entire document set. Each feature vector
contains term weights of the terms appearing in
that document. Similarity between documents can
be calculated using one of the similarity measures,
such as cosine or Jaccard measure.

The similarity measure we use here is one
adapted from Hammouda [7]. Hammond’s
similarity measure takes account all the words
occur in the document. However, we only use the
noun and verb occur in the document to build our
lexical chains. So it is inefficient to use
Hammond’s similarity measure. We use a
simplified version for phrase weighting according
to both the term frequency and the phrase
frequency (See Equation 1 below).

Equation 1 consisted of two parts: the phrase

weight and term

weight .
1 2(,)pSim D D

1 2(,)tSim D D

1 2 1 2 1 2

1 2 1 2

2

1 2

1

1 2

1 2

1 2

(,) (,) (1) () (1)

(,) cos() (2)

[() * ()] (3)(,)

,

,

p t

t

m

p i i

Sim D D Sim D D Sim D D

Sim D D D D

Sim L p f fD D

D D
D D

α α= + −

= =

= +

⋅

∑

 We set α at 0.5 empirically in our
experiments. 1 2 is calculate by cosine
measure where the vectors D1 and D2 are
represented as term weights using tf*idf weighting
scheme. Where

(,)iSim D D

()L p is the length of the phrase;
m is the number of phrases; 1if is phrase
frequency in the iD .

The formula calculates text similarity
between each pair of documents in order to cluster
them separately. Finally we separate these
documents into small clusters in this module, and
each cluster has its own DIG.

3.5 Summarizing

The initial version for our summarizer is based on
the traditional chain scoring algorithm proposed by
Hirst and St-Onge [8]. Firstly, all words that are a
noun or a verb in WordNet are selected. Then “the
relatedness of two noun words is determined in
terms of the distance between their occurrences in
document and the shape of the path that connect
them in the WordNet thesaurus"[10]. Three
different relationships between candidate noun
words are defined: extra-strong, strong and
medium-strong. Extra-strong relations are lexical
repetitions of a noun word and strong relations are
synonyms or near synonyms. Strong relations can
also indicate a shared hypernym/hyponym or
meronym/holonym, that is, one noun word is a
parent-node or child-node of the other in the
WordNet topology. Medium-strong relations
follow the rule set laid out by St. Onge. [10] These
rules govern the shape of the paths that are
allowable in the WordNet structure. Then a greedy
algorithm is used to disambiguate the multi-sense
noun: a multi-sense word's sense is determined
only by the senses of other noun words that occur
before it in the document. In addition, when
processing the verb word, we try to find the phrase
that contain this verb, and then add the verb to the
chain where the noun of the phrase appears.
 It’s assumed that the summary should be
written at a level of granularity that is consistent
with the granularity requested in the user profile.
In our system, the two types of profiles (general
and specific) have an effect on entry selection
during the chains building. The general profile
does not need all the address and name entries, so
we decrease them by a threshold. Meanwhile the
key phrases extracted in the clustering step are
good entry from the viewpoint of lexical cohesion.
So a chain containing more phrases is given a
higher score. The strongest chains of each cluster
are selected create the summary once all the chains
have been built. However, usually the results are
more than 250 words, which are required by DUC.
So the results are submitted to the compression
module.

3.6 Compression

In order to minimize redundancy, we use an

algorithm called Maximum Marginal Relevance
(MMR) [20], which is proposed by Carbonell and
Goldstein. It aims at having high relevance of the
summary to the query or the document topic, while
keeping redundancy in the summary low. A
number of features of sentence, such as content
words, chronological order, query/topic similarity,
anti-redundancy and pronoun penalty, are used in
the algorithm. Sentences chosen for inclusion in
summary are those that are maximally similar to
the document or query, while maximally dissimilar
to the sentences already included in the summary.

MMR can generate the summary with any
desired length. We adopt sentence properties which
has used at the first step of the summarization,
such as, positions, words sequence and term
frequency in MMR.

4 Evaluation

The official result we submitted to DUC is
evaluated by ROUGE 1.5 [12]. Table 1 is the
Linguistic Quality score, which is judged on five
aspects: grammaticality, non-redundancy,
referential clarity, focus, structure and coherence.
They are identified by L1, L2...L5 in the table.

System L1 L2 L3 L4 L5

IS-SUM 3.96 4.76 3.24 3.49 2.67

Table1: Average Linguistic Quality

Our system produced good performance on
non-redundancy, but not on structure and
coherence. This is because our method does not
take syntax into consideration during sentence
generation.

Table 2 is responsiveness score of our system.
The score is an integer between 1 and 5, with 1
being the least responsive and 5 the most
responsive. The bold column is the result of our
system.

There are 2 different profiles (General &
Specific) in DUC 2005. All the 32 systems show a
better performance in the latter summary (specific)
and the average scores for the entire 25 topic
requires general summary are all below 3. Our
system produced almost the same performance in
specific topic and general topic. It is due to the fact
that our algorithm takes both terms and phrases
into consideration.

Number AVG IOS Number AVG IOS

D301 3.125 3 D398 2.375 1

D307 2.0625 3 D400 2.25 3

D311 2.78125 2 D401 2.78125 3

D313 3.6875 4 D404 3.46875 4

D321 2.21875 2 D407 2 2

D324 3 2 D408 2.3125 1

D331 2.4375 3 D413 2.65625 2

D332 1.65625 2 D422 2.0625 3

D343 2.34375 3 D426 1.96875 2

D345 2.25 2 D428 2.96875 2

D346 2.65625 3 D431 2.375 2

D347 2.46875 2 D434 2.3125 2

D350 2.8125 3 D435 2.09375 2

D354 2.46875 2 D436 2.3125 3

D357 1.90625 2 D438 3.46875 4

D360 1.6875 2 D442 2.40625 3

D366 2.46875 2 D446 2.5625 2

D370 2 2 D632 2.15625 2

D374 2.65625 2 D633 3.1875 1

D376 2.125 2 D654 2.40625 3

D383 1.875 1 D671 1.8125 1

D385 2.15625 2 D683 2 2

D389 2.28125 1 D694 2.25 1

D391 1.59375 1 D695 2.4375 2

D393 2.1875 1 D699 1.96875 2

Table2 Responsiveness
We compare the Models of Document D438

with the summary output by IS_SUM in order to
see whether the similar summary would have
similar DIG. Figure 6a is a part of DIG of the
whole 4 models of D438 (that is the summary
results given by human), and the right one, Figure
6b is output of our system. The node of ‘year’ and
‘month’ in right figure shows it has many words
that describe time or date. This may be because it
contains some sentence about specific event. The
size of the in the right graphic show their weight in
summary. For example, nodes like ‘UK’ and
‘Tourist’ are important in the summary. Obviously
we found such entries are also the focus of the left
one. So we may work out a formula for using DIG
to evaluate summary later. Although DIG didn’t

Figure 6a: Four Models’ DIG Figure6b: One Peer’s DIG

produce precise summary as we expected, it has
shown their features by which we can enhance our
system in the future.

5 Conclusion and Future work

We adopt a new way for document clustering and
summarization based on the DIG and Lexical
Chains. A phrase-based module is introduced into
the traditional Lexical Chain method. The results
show the benefit of integrating DIG with Lexical
Chains.

We also observed several problems of our
method. This method can at least be improved on
the following aspects:

 Ambiguous Anaphora: Several heuristics have
been proposed in the literature to address this
problem [5]. A preferable solution would be
introducing an anaphora resolution algorithm
before outputting the final results.

 Performance: Although the main system are
written in Java with some aid tools written in
Perl, sometimes the required memory is too
large and the execution time is too long even
for an experimental system.

 Evaluation: We should try to evaluate our
system with different methods in order to get
the cues to increase the performance. The
Pyramid method proposed by DUC this year is
a good option.

6 Acknowledgements

This work is supported by Beijing New Star Plan
of Technology & Science (NO.H020820790130)
and the National Science Fund of China under
contract 60203007.

References

[1] NIST, 2005 DUC Topic Development Task for
Summarization, Document Understanding
Conference, 2005.

[2] NIST, 2005 DUC Summary Writing Task, Document
Understanding Conference, 2005.

[3] Dragomir R. Radev, Text summarization, ACM
SIGIR tutorial, 2004.

[4] Morris, J. and Hirst, Lexical cohesion computed by
thesaural relations as an indicator of the structure of
text, Computational Linguistics 17(1): 21.43, 1991.

[5] Barzilay R. and Elhadad M, Using Lexical Chains
for Summarization. ACL/EACL-97 summarization
workshop Pp 10.18, Madrid, 1997.

[6] Brunn M., Chali Y., and Pancake C, Text
summarization using lexical chains, In Workshop on
Text Summarization in conjunction with the ACM
SIGIR Conference 2001, New Orleans, Louisiana,
2001.

[7] Hammouda, K., Kamel, M.: Efficient phrase-based
document indexing for web document clustering.
IEEE Transactions on Knowledge and Data
Engineering 16 (2004) 1279¨C1296.

[8] St. Onge, Detection and Correcting Malapropisms
with Lexical Chains, M.Sc Thesis, University of

Toronto, Canada, 1995.
[9] Madhavi K. Ganapathiraju, Relevance of Cluster size

in MMR based Summarizer: A Report 11-742:
Self-paced lab in Information Retrieval, November
26, 2002

[10] William Doran, Nicola Stokes, Joe Carthy, and John
Dunnion, Comparing Lexical Chain-based
Summarization Approaches Using an Extrinsic
Evaluation, 2004.

[11] DUC 2005 http://duc.nist.gov
[12] ISI ROUGE www.isi.edu/%7Ecyl/ROUGE/
[13] Miller G, Introduction to WordNet, 1990
[14] Paice C, and Husk G, Towards the automatic

recognition of anaphoric features in English text:
The impersonal pronoun “it”. Computer Speech and
Language 2:109–132, 1991.

[15] Khaled M. Hammouda, Mohamed S. Kamel,
Document Similarity Using a Phrase Indexing Graph
Model, 2004

[16] The Stanford Natural Language Processing Group
http://nlp.stanford.edu/software/tagger.shtml

[17] Dragomir R. Radev, Jahna Otterbacher_, Hong Qi_,

and Daniel Tam, MEAD ReDUCs: Michigan at

DUC 2003,2003

[18] Marcu, Daniel. 1997. From Discourse Structures to

Text Summaries. In The Proceedings of the

ACL’97/EACL’97 Workshop on Intelligent

Scalable Text Summarization, 82–88

[19] Shuhua Liu, [ppt] Text Summarization -- In Search

of Effective Ideas and Techniques，2004

[20] J. Carbonell and J. Goldstein. 1998. The use of

MMR, diversity-based reranking for reordering

documents and producing summaries. In Proc.

ACM SIGIR, pages 335--336.

http://duc.nist.gov/
http://www.isi.edu/%7Ecyl/ROUGE/
http://nlp.stanford.edu/software/tagger.shtml

	IS_SUM: A Multi-Document Summarizer based on Document Index Graphic and Lexical Chains
	Abstract
	1 Introduction
	2 Previous work
	3.2 System Architecture
	3.3 Preprocessing
	3.4 Document Clustering
	3.5 Summarizing
	3.6 Compression
	4 Evaluation
	IOS
	IOS

	5 Conclusion and Future work
	6 Acknowledgements
	References

