
Macquarie University at DUC 2006:
Question Answering for Summarisation

Diego Mollá and Stephen Wan
Centre for Language Technology

Division of Information and Communication Sciences
Macquarie University

Sydney, Australia
{diego,swan}@ics.mq.edu.au

Abstract

We present an approach to summarisa-
tion based on the use of a question an-
swering system to select the most rele-
vant sentences. We used AnswerFinder,
a question answering system that is
being developed at Macquarie Univer-
sity. The sentences returned by An-
swerFinder are further re-ranked and
collated to produce the final summary.
This system will serve as a baseline
upon which we intend to develop meth-
ods more specific to the task of question-
driven summarisation.

1 Introduction

This document describes Macquarie University’s
effort to use the output of a question answering
system for the task of document summarisation.1

Current question answering systems in general,
and our system in particular, are designed to han-
dle simple questions that ask for a specific item of
information. In contrast, a DUC topic is typically
a block of text made up of a sequence of declar-
ative sentences. A complex information request
such as those formulated as DUC topics needs to
be mapped into a set of simpler requests for spe-
cific information. This is what we did in our im-
plementation.

We used AnswerFinder, the question answer-
ing system being developed at Macquarie Univer-

1This work is supported by the Australian Research Coun-
cil under ARC Discovery grant DP0450750.

sity. The main feature of AnswerFinder is the use
of lexical, syntactic and semantic information to
find the sentences that are most likely to answer
a user’s question. We decided to make minimal
modifications to AnswerFinder and to focus on the
conversion of the DUC text into questions that can
be handled by AnswerFinder. In particular, the
text of each DUC topic was split into individual
sentences, and each sentence was passed to An-
swerFinder independently. A selection of the re-
sulting sentences were combined using a simple
method described here.

Section 2 describes how the DUC topics were
converted into individual questions. Section 3 de-
scribes the question answering technology used to
find the sentences containing the answers. Sec-
tion 4 focuses on the method used to select the
most relevant sentences and combine them to form
the final summaries. Sections 5 presents the re-
sults. Finally, Section 6 presents some conclusions
and discusses further research.

2 Converting Topics to Sequences of
Questions

AnswerFinder is designed to answer simple ques-
tions about facts and lists of facts. The version of
AnswerFinder used here is a Python-based version
that participated in the question answering track of
TREC 2004 (Mollá and Gardiner, 2005).

Questions in the QA track of TREC 2004 were
grouped into topics. Each topic is a group of ques-
tions about specific aspects of the topic. An exam-
ple of a TREC topic is shown in Table 1.

Questions in a topic are of three types:



Topic number 2: Fred Durst
2.1 FACTOID What is the name of Durst’s

group?
2.2 FACTOID What record company is he

with?
2.3 LIST What are titles of the

group’s releases?
2.4 FACTOID Where was Durst born?
2.5 OTHER Other

Table 1: A topic in TREC 2004

FACTOID: Questions about specific facts. The
answer is a short string, typically a name or a
number.

LIST: Questions about lists of facts.

OTHER: This special question requires finding
all relevant facts about the topic that have not
been mentioned in the answers to the previ-
ous questions.

The grouping of TREC questions into topics
was very convenient for our purposes, so we de-
cided to convert DUC topics directly into TREC
topics. This was done by using the same topic
names as in the DUC topics, and splitting the DUC
topic descriptions (<narr> field) into individual
sentences. Each individual sentence was treated as
a LIST question by AnswerFinder. The rationale
for converting all sentences into LIST questions is
that we aim at finding all sentences that contain
the answer. AnswerFinder is designed so that the
output of a LIST question is the list of unique an-
swers to that question. This is therefore the closest
to what we need.

For example, the DUC topic D0602B (Table 2)
was converted into the TREC-like topic shown in
Table 3.

The conversion is clearly a simplification of
what could be done. There are two enhancements
that would be likely to produce questions that are
better tuned for AnswerFinder:

• Transform indicative forms into questions.
This option seems obvious, though the im-
pact of doing this is not as strong as it
would seem. This is so because the ques-
tion answering module can handle sentences

num D0602B
title steroid use among female ath-

letes
narr Discuss the prevalence of steroid

use among female athletes over
the years. Include information
regarding trends, side effects and
consequences of such use.

Table 2: DUC topic D0602B

Topic number D0602B: steroid use among
female athletes
D0602B.1 LIST Discuss the prevalence of

steroid use among female
athletes over the years.

D0602B.2 LIST Include information re-
garding trends, side ef-
fects and consequences of
such use.

Table 3: DUC topic converted into a TREC topic

in the declarative form. As a matter of fact,
the parser used by AnswerFinder is gener-
ally more accurate with declarative sentences
than with interrogative sentences. The only
real impact of using the interrogative form is
during the process of classifying the question.
However, given that the kinds of questions
asked in DUC are likely to be very different
from those asked in TREC, it is still neces-
sary to adapt the question classifier to the new
task.

• Split complex sentences into individual ques-
tions. For example, the sentence Include in-
formation regarding trends, side effects and
consequences of such use could be converted
into three questions:

1. What are the trends of such use?
2. What are the side effects of such use?
3. What are the consequences of such use?

3 Sentence Selection Driven by the
Questions

The version of AnswerFinder that participated in
TREC 2004 returns exact answers. For example,



the exact answer to the question What is the name
of Durst’s group? is Limp Bizkit. In the process
of finding the exact answer, the system first deter-
mines the sentences that are most likely to contain
the answer. This is the output that we made An-
swerFinder produce for the DUC system. In par-
ticular, the following modules of AnswerFinder
were used:

• Question normalisation

• Question classification

• Candidate sentence extraction

• Sentence re-scoring

These modules are described below.

3.1 Question Normalisation

Given that the questions may contain anaphoric
references to information external to the ques-
tions, AnswerFinder performs simple anaphora
resolution on question strings. In particular, An-
swerFinder performs a simple replacement of the
pronouns in the question with the topic text. Since
AnswerFinder needs syntactically correct ques-
tions, the target is transformed to the plural form
or the possessive form where necessary. The trans-
formation uses very simple morphological rules to
transform the questions as shown in Table 4.

3.2 Question Classification

Generally, particular questions signal particular
named entity types expected as responses. Thus,
the example below expects a person’s name in re-
sponse to the question:

Who founded the Black Panthers orga-
nization?

AnswerFinder uses a set of 29 regular expres-
sions to determine the expected named entity type.
These regular expressions are the same used in our
contribution to TREC 2003 and they target the oc-
currence of Wh- question words. In addition, spe-
cific keywords in the questions indicate expected
answer types as shown in Table 5.

3.3 Candidate Sentence Extraction

Given the set of documents provided by NIST, An-
swerFinder selects 100 sentences from these doc-
uments as candidate answer sentences.

Candidate sentences are selected in the follow-
ing way:

1. The documents provided by NIST are split
into sentences. The sentence splitter follows
a simple approach based on the use of a fixed
list of sentence delimiters. This is the same
method that we used to split the DUC topic
description into TREC questions.

2. Each sentence is assigned a numeric score:
1 point for each non-stopword that appears in
the question string, and 10 points for the pres-
ence of a named entity of the expected an-
swer type. AnswerFinder automatically tags
the named entities in all the documents in an
off-line stage prior to the processing of DUC
topics.

3. For each question, the 100 top scoring sen-
tences are returned as candidate answer sen-
tences.

As an example of the scoring mechanism, con-
sider this pair of question and candidate answer
sentence:

Q: How far is it from Mars to Earth?

A: According to evidence from the SNC
meteorite, which fell from Mars to
Earth in ancient times, the water con-
centration in Martian mantle is esti-
mated to be 40 ppm, far less than the
terrestrial equivalents.

The question and sentence have two shared non-
stopwords: Mars and Earth. Further, this sentence
has a named entity of the required type (Number):
40 ppm, making the total score for this sentence
12 points.

3.4 Sentence Re-scoring

The 100 candidate sentences are re-scored based
on a combination of lexical, syntactic, and seman-
tic features:



What record company is he with? −→ What record company is Fred Durst with?
How many of its members committed sui-
cide?

−→ How many of Heaven’s Gate’s members
committed suicide?

In what countries are they found? −→ In what countries are agoutis found?

Table 4: Examples of pronoun resolution performed by AnswerFinder

Keyword Answer Type
city, cities Location
percentage Number
first name, middle name Person
range Number
rate Number
river, rivers Location
what is, what are, what do Person, Organisation or Location
how far, how long Number

Table 5: Examples of question keywords and associated answer types

Lexical: The presence of a named entity of the
expected answer type and the overlap of
words.

Syntactic: The overlap of grammatical relations.

Semantic: The overlap of flat logical forms ex-
tended with patterns.

The use of lexical information has been de-
scribed in Section 3.3. Below we will briefly de-
scribe the use of syntactic and semantic informa-
tion.

3.4.1 Grammatical Relation Overlap Score
The grammatical relations devised by

Carroll et al. (1998) encode the syntactic in-
formation in questions and candidate answer
sentences. We decided to use grammatical rela-
tions and not parse trees or dependency structures
for two reasons:

1. Unlike parse trees, and like dependency
structures, grammatical relations are easily
incorporated into an overlap-based similarity
measure.

2. Parse trees and dependency structures are de-
pendent on the grammar formalism used. In
contrast, Carroll et al. (1998)’s grammatical
relations are independent of the grammar for-
malism or the actual parser used. Our choice

of parser was the Connexor Dependency
Functional Grammar and parser (Tapanainen
and Järvinen, 1997). Being dependency-
based, the transformation to grammatical re-
lations is relatively straightforward.

An example of the grammatical relations for a
question and a candidate answer sentence follows:

Q: How far is it from Mars to Earth?
(subj be it )
(xcomp from be mars)
(ncmod be far)
(ncmod far how)
(ncmod earth from to)

A: It is 416 million miles from Mars to
Earth.
(ncmod earth from to)
(subj be it )
(ncmod from be mars)
(xcomp be mile)
(ncmod million 416)
(ncmod mile million)

The similarity-based score is the number of re-
lations shared between question and answer sen-
tence. In the above example, the two overlapping
grammatical relations are shown in boldface.



3.4.2 Flat Logical Form Patterns

Semantic information is represented by means
of flat logical forms (Mollá, 2001). These logi-
cal forms use reification to flatten out nested ex-
pressions in a way similar to other QA systems
(Harabagiu et al., 2001; Lin, 2001, for exam-
ple). The logical forms are produced by means
of a process of bottom-up traversal of the depen-
dency structures returned by Connexor (Mollá and
Hutchinson, 2002).

A straightforward way of using the flat logical
forms is to compute their overlap in the same way
as we find the overlap of grammatical relations,
so that the score of the above example would be
computed as follows:

Q: What is the population of Iceland?
object(iceland, o6, [x6])
object(population, o4, [x1])
object(what, o1, [x1])
prop(of, p5, [x1, x6])

A: Iceland has a population of 270000
dep(270000, d6, [x6])
object(population,o4,[x4])
object(iceland,o1,[x1])
evt(have,e2,[x1,x4])
prop(of,p5,[x4,x6])

In this example, the two overlapping logical
form predicates are shown in boldface. Note
that the process to compute the overlap of logical
forms must map the variables from the question
to variables from the candidate answer sentence.
AnswerFinder uses Prolog unification for this pro-
cess.

With the goal of taking into consideration the
differences between a question and the various
forms that can be used to answer it, AnswerFinder
uses patterns to capture the expected form of
the answer sentence and locate the exact answer.
Thus, if a question is of the form what is X of Y?,
then a likely answer can be found in sentences like
Y has a X of ANSWER. In contrast with other ap-
proaches, AnswerFinder uses flat logical form pat-
terns. For example, the pattern for what is X of Y?
is:

Question Pattern:
object(ObjX,VobjX,[VeX]),
object(what, ,[VeWHAT]),
object(ObjY,VobjY,[VeWHAT]),
prop(of, ,[VexistWHAT,VeX])

And the pattern of Y has a X of ANSWER is:

Answer Pattern:
dep(ANSWER,ANSW,[VeANSW]),
prop(of, ,[VeY,VeANSW]),
object(ObjX,VobjX,[VeX]),
evt(have, ,[VeX,VeWHAT]),
object(ObjY,VobjY,[VeY])

Borrowing Prolog notation, the above patterns
use uppercase forms or ‘ ’ to express the argu-
ments that can unify with logical form arguments.
As the logical form of What is the population of
Iceland? matches the above question pattern, then
its logical form is transformed into:

Q: What is the population of Iceland?
dep(ANSWER,ANSW,[VeANSW]),
prop(of, ,[VeY,VeANSW]),
object(iceland,o6,[x6]),
evt(have, ,[x6,x1]),
object(population,o4,[VeY])

Now the transformed logical form shares all five
terms with the logical form of Iceland has a pop-
ulation of 270000, hence the score of this answer
sentence is 5. In addition, AnswerFinder knows
that the answer is 270000, since this is the value
that fills the slot ANSWER.

The use of flat logical forms makes it possi-
ble to handle certain types of paraphrases (Rinaldi
et al., 2003) and therefore we believe that pat-
terns based on flat logical forms for the task of
identifying answer sentences such as the ones de-
scribed above are more appropriate than patterns
based on syntactic information or surface strings.
However, the resulting patterns are difficult for hu-
mans to read and the process of developing the
patterns becomes very time-consuming. Due to
time constraints we developed only 10 generic
templates. Each template consists of a pattern to
match the question, and one or more replacement
patterns. The above example is one of the ques-
tion/replacement patterns.



3.5 Actual Combination of Scores

After experimenting with various ways to combine
the lexical, syntactic, and semantic information,
the system developed for TREC 2004 used the fol-
lowing strategy:

1. Select the top 100 sentences according to lex-
ical information only (as described in Sec-
tion 3.3).

2. Re-rank the sentences using the following
combinations (several runs were produced
for TREC 2004):

• 3gro + flfo, that is, three times the over-
lap of grammatical relations plus once
the overlap of flat logical forms. In other
words, grammatical relations are given
three times more importance than flat
logical forms.

• flfo, that is, ignore the grammatical re-
lations overlap and use the logical form
information only.

Runs with the formula flfo had better results in
recent experiments with data from TREC 2005 so
we decided to use this formula in the submission
to DUC 2006.

4 Sentence Combination

In this work, we aimed to produce a summary
composed of extracted sentences. Given a set of
questions and a ranked list of returned sentences
per question (referred to as an Answer Set), the
final stage of our summariser determined which
sentences were to be selected for the summary. In
general, our sentence selection mechanism would
return more sentences than could be used in the fi-
nal summary given the length limit of 250 words
per summary.

Our summary content structure was quite sim-
ple. For each summarisation test case, we con-
structed a summary skeleton that allocated an
equal portion of the summary for each atomic
question derived from the statements in the orig-
inal DUC topic text. These portions were ordered
according to the order of the atomic questions in
the original DUC topic (i.e.. question order). Our

task then was to populate each of these portions
with sentences.

Our overall summary population strategy con-
sisted of the following steps:

1. Perform any necessary re-ranking of sentence
lists on the basis of their contribution to the
final answer.

2. Pop off the best sentence from each answer
set and insert it into the summary portion re-
served for the question associated with that
list.

3. Repeat step 2 until the summary length limit
is reached.

However, in order to populate a summary, we
found that we had to handle the following two is-
sues:

Issue 1 How do we select the best sentences given
multiple questions?

Issue 2 How do we allocate space to each ques-
tion?

In response to Issue 1, our re-ranking of an
answer set was designed to handle duplicate ex-
tracted sentences across all answer sets. Using the
well-established principle in multi-document sum-
marisation (Barzilay and McKeown, 2005), repe-
tition of sentence content was again taken to indi-
cate that the sentence was important. In our case,
a sentence that was automatically deemed to an-
swer multiple questions, and which was hence re-
turned several times, was given an elevated score.
This was achieved by keeping the first instance of
the duplicated sentence (in some answer set) but
updating its extraction score (as computed by An-
swerFinder) by adding the scores of subsequent
repetitions found in later answer sets. These du-
plicates were then removed. Once the re-scoring
based on duplicate detection was completed, sen-
tences in each answer set were resorted in de-
scending order by extraction scores, which are cur-
rently integers.2

2For sentences with the same score, we would have pre-
ferred to sort these by conserving the sentence order in the
original document. However, our system currently does not
return this information to the summary generation module so
we cannot ensure this.



To flesh out the summary skeleton, we iterated
across answer sets in ‘question order’. The top
sentence was removed from the answer set and
then inserted into the appropriate portion reserved
for that answer set in the summary skeleton. Note
that as we kept the first instance of a repeated sen-
tence, this sentence tended to appear towards the
beginning of the summary. Sentences underwent
simple preprocessing before insertion to remove
news source attribution information (like ‘Reuters

’), or location and time information of the news
story prepended to the sentence string.

Our space allocation approach gave space to
each question portion opportunistically (see Is-
sue 2) by looking at the quality of the answer
sentences extracted as indicated by the extraction
score. After one pass across the answer sets, our
summary would at least have one sentence answer
for each question. However, the 250 word limit
may not yet have been reached. Instead of sim-
ply filling out the sentences by giving each ques-
tion equal status (and hence equal portions of the
summary), we gave more room in the summary to
questions for which our sentence extraction mod-
ule found good answers. The intuition behind
this is that if AnswerFinder has done a better job
on some questions and not others, we should not
waste summary space by using sentences with low
extraction scores, which represent a low match to
the question.

To do this, we kept track of the best extrac-
tion score seen so far, regardless of which ques-
tion is being answered. We call this the Recent
Best score. We then iterated across answer sets
and if we found an answer that was as good as the
Recent Best score (i.e. equal to it), we appended it
to the end of the relevant portion in the summary.
If, after examining all answer sets, no sentences
were found to be as good as the Recent Best score,
we reduced the Recent Best score by one and re-
iterated again across answer sets. This process of
filling in the summary ends when our given word
limit is exceeded.

5 Results and Discussion

The results of the evaluation conducted by NIST
are shown in Table 6. The table includes the scores
for our system, the mean of all the participating

systems, the best scores, the worst scores, and the
scores of the NIST baseline system. The baseline
system returns all the leading sentences (up to 250
words) in the <TEXT> field of the most recent
document.

On average, our results are just below the av-
erage and above the baseline. The only result be-
low the baseline was the quality score, though it
should be mentioned that the baseline score was
higher than the best overall score across all sys-
tems. Considering the little amount of work spent
in the adaptation of the question answering system
and the final combination of the answers (under 35
person-hours), these results are encouraging.

We noted that there was not much difference be-
tween the scores produced by the automatic eval-
uations of all the systems. Therefore we did not
consider it advisable to evaluate the impact of spe-
cific components of our system in the overall re-
sults. Instead, we will focus on perfecting the
adaptation of the QA system and a more sophis-
ticated way of combining the answers found.

6 Conclusions and Further Research

Our contribution was the result of initial experi-
mentation on the integration of a question answer-
ing system for the task of question-driven doc-
ument summarisation. The results obtained are
promising and suggest that there is good potential
of such an integration.

The technology used in AnswerFinderis de-
signed to find answers to simple fact-based ques-
tions (of the type used in the QA track of TREC).
This needs to be adapted to the needs of question-
based summarisation. We have identified the fol-
lowing areas of further work:

Processing of the DUC topic description. We
plan to attempt a more detailed analysis of the
DUC topic descriptions (the <narr> field) so that
they are converted into simpler sentences. In some
cases this will involve decomposing a sentence
with conjunctive elements into several simpler
sentences. We currently integrate a dependency-
based parser and therefore it would be possible
to analyse the sentence dependency structures to
perform transformations that would split a depen-
dency structure into several simpler structures.



Responsiveness Automatic Eval.
Run Quality Content Overall R2 SU4 BE

AnswerFinder 3.20 2.40 2.10 0.08 0.13 0.04
Rank 21-27 24-28 20-28 9-19 17-22 9-21
Mean 3.35 2.56 2.19 0.07 0.13 0.04
Median 3.40 2.60 2.20 0.08 0.13 0.04
Best 4.10 3.10 2.40 0.10 0.16 0.05
Worst 2.30 1.70 1.30 0.03 0.06 0.00
Baseline 4.40 2.00 2.00 0.05 0.10 0.02

Table 6: Results of the NIST evaluation; 34 systems participated; the rank range indicates the existence
of other systems with same scores

Question analysis. The sentences derived from
the DUC topic descriptions system are very dif-
ferent to typical TREC QA questions. Conse-
quently, AnswerFinder’s question analyser needs
to be modified. Rather than converting the DUC
simplified sentences into TREC-like questions, it
is probably more useful to develop a taxonomy
of sentence types specific to the DUC task, and
then to develop a question classifier tuned to these
sentence types and patterns. Provided that one
can build a training corpus of reasonable size, a
good solution would be to use a statistical classi-
fier trained on such a corpus.

We also want to study methods to identify the
question focus. Given that the questions are typi-
cally in the form of declarative sentences (such as
discuss . . . ), typical methods used to find the focus
in questions may not apply here.

Sentence combination. The sentences extracted
in the QA component are independent of each
other. These sentences need to be re-ranked in or-
der to reduce redundancies and ensure a complete
answer.

Summary generation. Our text quality could
also be improved further. To make better use of the
limited summary length, we will examine methods
for compressing sentences. To enhance coherence,
we intend to examine schematic orderings of ex-
tracted information.

References
Regina Barzilay and Kathleen R. McKeown. 2005.

Sentence fusion for multidocument news summa-

rization. Computational Linguistics, 31(3):297–
328, September.

John Carroll, Ted Briscoe, and Antonio Sanfilippo.
1998. Parser evaluation: a survey and a new pro-
posal. In Proc. LREC98.

Sanda Harabagiu, Dan Moldovan, Marius Paşca, Mi-
hai Surdeanu, Rada Mihalcea, Roxana Gı̂rju, Vasile
Rus, Finley Lăcătuşu, and Răzvan Bunescu. 2001.
Answering complex, list and context questions with
LCC’s question-answering server. In Ellen M.
Voorhees and Donna K. Harman, editors, Proc.
TREC 2001, number 500-250 in NIST Special Pub-
lication. NIST.

Jimmy J. Lin. 2001. Indexing and retrieving natural
language using ternary expressions. Master’s thesis,
MIT.

Diego Mollá and Mary Gardiner. 2005. Answerfinder
at TREC 2004. In Ellen M. Voorhees and Lori P.
Buckland, editors, Proc. TREC 2004, number 500-
261 in NIST Special Publication. NIST.

Diego Mollá and Ben Hutchinson. 2002. Dependency-
based semantic interpretation for answer extraction.
In Proc. 2002 Australasian NLP Workshop.

Diego Mollá. 2001. Ontologically promiscuous flat
logical forms for NLP. In Harry Bunt, Ielka van der
Sluis, and Elias Thijsse, editors, Proceedings of
IWCS-4, pages 249–265. Tilburg University.

Fabio Rinaldi, James Dowdall, Kaarel Kaljurand,
Michael Hess, and Diego Mollá. 2003. Exploit-
ing paraphrases in a question answering system. In
Proc. Workshop in Paraphrasing at ACL2003, Sap-
poro, Japan.

Pasi Tapanainen and Timo Järvinen. 1997. A non-
projective dependency parser. In Proc. ANLP-97.
ACL.


