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Abstract

The large volume of video content generated each
day has led to the need for efficient and effec-
tive methods of video indexing and retrieval. A
common first step in indexing video content is to
identify visually and semantically continuous seg-
ments or shots. In this paper, we present the mov-
ing query window approach to video shot bound-
ary detection. This uses the techniques of query-
by-example (QBE) and ranked results, both often
used in content-based image retrieval (CBIR). Each
frame of the video is used in turn as an example
query on the image collection formed by the other
frames within a moving window. Transitions are
detected by monitoring the relative ranks of these
frames in the results list. We show that this is an
effective approach for the shot boundary detection
task of the TREC-11 video track.

1 Introduction

Video is the next frontier of visual information re-
trieval: for archived footage to be useful, its con-
tents must be known. Since a video clip has a time
dimension, this generally means that the content
must be reviewed sequentially, and sections of in-
terest identified. This is a costly and tedious task
to perform manually, and so automatic techniques
are required.

A video stream can be considered to be composed
of small, coherent sections, called shots, where adja-
cent frames are generally similar. A small number
of sample frames can be selected from each shot
and indexed for use in video retrieval [4, 20]. The
answer to a video retrieval information need could

then be a list of shots that contain frames judged
to be similar to the query requirements.

A shot is bounded at each end by a transition.
The main types of transition are cuts, fades, dis-
solves, and spatial edits [5, 16]. The type and fre-
quency of transitions in a video clip is largely de-
pendent on the age of the footage and the nature of
the content. Almost all transitions in fast-moving
television news footage are cuts, and dissolves are
rare. In a documentary, dissolves and fades appear
frequently. Cuts, dissolves, and fades account for
the majority of transitions; Lienhart [10] reports
proportions of more than 99%, and similar ratios
were observed in the TREC-10 and TREC-11 video
collections.

Video footage can be segmented into shots by
detecting the shot start and end points, as signi-
fied by transitions. The difference between adja-
cent frames of a shot is usually small, but increases
during transitions. Most shot boundary detection
algorithms identify transitions by monitoring for
significant changes in the video frames.

One method to measure this change is to com-
pare frames pixel by pixel: transitions are reported
if the colour or intensity of a significant number of
pixels changes much from frame to frame [2]. How-
ever, pixel-by-pixel comparison of frames is gen-
erally computationally intensive, and sensitive to
object motion, noise, camera motion, and changes
in camera zoom. Computing and comparing statis-
tics of the frames — such as the mean and stan-
dard deviation of pixel values [9], or histograms
of colour usage [13, 24] — reduces sensitivity but
entails computation overhead. Several researchers
have used the information produced by the video
compression process to achieve shot boundary de-



tection [1, 12, 22]. These methods are typically fast,
since they do not need to completely decompress
the video stream prior to processing. However, they
are reported to suffer from low precision [2].

Recent work in this area using colour histograms
includes that of Pickering et al. [14]. In their ap-
proach, frames are divided into nine blocks, and
red, green, and blue (RGB) colour component his-
tograms extracted from each. The Manhattan
distance between the histograms of corresponding
blocks is calculated, and the largest of the three is
retained as the distance between the blocks. The
median of the nine individual inter-block distances
is taken as the inter-frame distance. A transition
is reported if this distance is greater than a fixed
threshold and also greater than the average dis-
tance value for the 32 surrounding frames.

Sun et al. [18] compare the colour histograms of
adjacent frames within a moving window; a shot
boundary is reported if the distance between the
current frame and the immediately preceding one is
the largest inter-frame distance in the window, and
significantly larger than the second largest inter-
frame distance in the same window.

The IBM CueVideo program uses a sampled
three-dimensional RGB colour histogram to mea-
sure the distance between pairs of frames [17]. His-
tograms of recent frames are stored in memory,
and statistics are calculated for this moving win-
dow. These statistics are used to determine adap-
tive threshold levels.

Text retrieval researchers have long used the data
and benchmarks provided by the Text Retrieval
Conference [6, 19] to evaluate the effectiveness of
different approaches. TREC has recently added a
new video track that provides corresponding data
sets and benchmarking schemes for video retrieval,
with the TREC-10 conference in 2001 the first to
incorporate the new track [16]. In this paper, we
present our approach to video segmentation based
on the concepts of querying by example image
(QBE) and ranked results, both regular features
of content-based image retrieval (CBIR).

We introduce in the next section our new ap-
proach. Section 3 addresses our choice of features
and parameters. In Section 4, we review the per-
formance of our technique on the TREC-11 shot
boundary detection task. In Section 5, we conclude
and discuss possible areas for improvement.

2 The moving query window technique

At RMIT University, we have previously studied
content-based image retrieval, or CBIR. A CBIR
system aims to satisfy the information need of a
user by selecting images from the collection that
best meet the user’s requirements. With many
CBIR systems, users convey their requirements by
selecting features such as colour and texture from a
palette [3], sketching a representation of the desired
image [8], or providing an example image that cap-
tures the qualities of the target image [7]. The last
two methods are categorised as query-by-example,
or QBE.

In CBIR, a summary is produced for each image
in the collection that captures visual aspects such
as colour and texture distributions, and the shape
and location of objects in the image. When using
QBE, a corresponding summary is produced for the
query. These summaries are compared, and collec-
tion images are ranked by similarity to the query.
The user is then presented a list of all the images
in the collection, ranked from most similar to least
similar.

We have applied the concepts of QBE and ranked
results to the video segmentation problem. Individ-
ual frames of the video stream are treated as the
query image, while surrounding frames are treated
as images in a collection.

We define a moving window of size N extending
equally on either side of the current frame, but not
including the current frame itself. The number N

2

is referred to as the half window size (HWS). We
refer to the N

2
frames preceding the current frame

as the pre-frames. Similarly, the N

2
window frames

following the current frame are post-frames. Fig-
ure 1 shows a moving window of ten frames, with
five pre- and post-frames on either side of the cur-
rent frame.

We use the current frame as a query on the col-
lection of frames inside this moving window, that
is, to the pre- and post-frames. This QBE orders
the N collection frames by decreasing similarity to
the query frame, with the most similar frame first,
and the most dissimilar frame last.

The difference between the current frame —
which is used as the query example — and the
frames before and after it will usually be near-
symmetrical. Thus, the pre- and post-frames will
be interspersed throughout the ordered list of win-
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pre frames post frames

moving window current frame

Figure 1: Moving query window with a half window size (HWS) of 5; the five frames preceding and the
five frames following the current frame form a collection, against which the current frame is used as a
query example.

Pre-frames Current frame Post-frames NumPreFrames

A A A A A A A A A A A A A A A A A A A A A   5

A A A A A A A A A A A A A A A A B B B B B   7

A A A A A A A A A A A B B B B B B B B B B 10

A A A A A A A A A A B B B B B B B B B B B   0

A A A A A A B B B B B B B B B B B B B B B   2

Figure 2: As the moving window traverses an abrupt transition, the number of pre-frames in the N

2

frames most similar to the current frame varies significantly. This number (NumPreFrames) rises to a
maximum just before an abrupt transition, and drops to a minimum immediately after the transition.

dow frames, and the number of pre- and post-
frames in the top N

2
results will be approximately

equal. However, this changes in the vicinity of a
transition.

2.1 Abrupt transitions

As the current frame approaches a cut, frames
from the second shot enter the window. All the
pre-frames are from the first shot (shot A), while
some of the post-frames belong to the second shot
(shot B). However, the current frame is still from
shot A, so after computing the similarity to the
query, we generally find the shot B frames ranked
the lowest, that is, lower than the shot A frames.
As a result, there is a rise in the number of pre-
frames in the top N

2
.

When the current frame is the last frame of
shot A, all pre-frames are from shot A, and all post-
frames are from shot B. At this point, the number
of pre-frames in the top N

2
reaches a maximum,

since the shot A frames will all be ranked above
the shot B frames. This can be seen in Figure 2.
As the current frame moves into the next shot, the
example image is from shot B, so the situation is re-
versed: the number of post-frames in the top N

2
ex-

hibits a sharp rise, while the number of pre-frames
drops to near zero.

In the plot of Figure 3, the variation in the num-
ber of pre-frames in the top N

2
results is shown

over 200 frames of a clip. The location of the four
cuts and one dissolve in this interval are above.
Cuts are accompanied by a sharp drop in the num-
ber of pre-frames at the top of the ranked list.
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Figure 3: Plot of the number of pre-frames in the top half of the ranked results for a 200-frame interval.
The five transitions present in this interval are indicated above the plot. The parameters used for HWS,
the upper threshold (UB) and the lower threshold (LB) are listed between parentheses.

2.2 Gradual transitions

The first transition in Figure 3 is a gradual tran-
sition. We see that frame ranks within the mov-
ing window are also affected by this transition, al-
though to a lesser extent than by the cuts. Our
technique can be modified to additionally detect
gradual transitions. When the moving window
traverses a gradual transition, we observe three
phases:

1. Post-frames enter transition, but the
current frame is not yet in transition:
The number of pre-frames ranked in the top
N

2
rises, since the transition frames are less

similar to the example frame than the non-
transition frames.

2. Current frame in transition: The number
of pre-frames ranked in the top N

2
slowly de-

creases.

3. Current frame exits transition: The num-
ber of pre-frames ranked in the top N

2
falls

significantly, since the pre-frames — which are
still within in the transition — are less similar
to the example than the post-frames.

The three phases of this transition can be seen
from the plot at the top of Figure 3. Considering
the number of pre-frames in the top N

2
results, we

see that this number increases towards the peak as
we approach the start of a transition. During the
transition, the number returns to moderate values.
As the current frame exits the transition, the num-
ber of pre-frames drops to a minimum; the value
gradually increases again as the transition frames
leave the half of the window that precedes the cur-
rent frame. We can detect gradual transitions by
monitoring for this characteristic pattern.

In general, detection of gradual transitions is
more difficult than detection of abrupt transitions.
In contrast to cuts, gradual transitions do not have
a sharp division between shots, and adjacent frames
within a gradual transition usually differ by a small
amount. To accentuate the differences between the
frames, we could sample the stream at a lower rate.
This would, however, reduce our precision: if we
use every nth frame, we can only resolve the shot
boundary to within n frames.

In our experiments, we use all frames, employ-
ing each in turn as a query example. However, we
omit the closest few frames bordering the current
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Figure 4: Moving query window with a half window size (HWS) of 8, and a demilitarised zone (DMZ) of
three frames on either side of the current frame; the eight frames preceding and the eight frames following
the current frame form a collection, against which the current frame is used as a query example.

frame from the collection. This leaves a gap, which
we refer to as the Demilitarised Zone (DMZ) on ei-
ther side of the current frame, as illustrated in Fig-
ure 4. The DMZ effectively determines the differ-
ence between the example frame and the most sim-
ilar frame from the window; a large value value for
the DMZ will blur the distinction between frames
of shot A and frames of shot B.

2.3 Algorithm details

In this section, we describe the details of our shot
boundary detection scheme. We begin by defining
the algorithm parameters, and continue with a de-
scription of the detection steps for transitions.
In our discussion, we refer to four primary param-
eters:

Half Window Size (HWS): The number of
frames from either side of the current frame
that are contained within the moving window.
Since we examine the top N

2
-ranking frames,

we use this number as the main parameter,
rather than the full window size (N) itself.
This is shown in Figure 4.

Demilitarised zone depth (DMZ): This is the
size of the gap between the current frame and
the nearest frame that is part of the moving
window. See Figure 4 for an example.

Lower Bound (LB): This is the lower threshold.
Once the number of pre-frames falls below this
level, a possible transition is detected as shown
in Figure 3.

Upper Bound (UB): This is the upper thresh-
old. Once the number of pre-frames rises above
this level, a possible transition is detected as
shown in Figure 3.

We continue next with a discussion of how abrupt
transitions are detected using the moving window
and these parameters.

Detection of cuts

To detect abrupt transitions, we monitor the num-
ber of pre-frames in the top N

2
results as each

frame is examined. We refer to this number as
NumPreFrames. We also measure the slope of the
NumPreFrames curve. This is normally small, that
is, in the order of ±2.

As we near an abrupt transition, NumPreFrames
rises quickly and passes the upper bound (UB).
Once we pass the transition, NumPreFrames falls
sharply below the lower bound (LB). The slope re-
flects this by taking on a large positive value, fol-
lowed quickly by a large negative value. This be-
haviour can be observed in Figure 3. We report
a possible cut if NumPreFrames exceeds UB, then
falls below LB in the space of two frames.

In some cases, the slope condition may be sat-
isfied inside a shot, where no transition exists.
This may occur where, for example, a traffic light
changes from red to green; all “red” frames will
be ranked together and separately from all “green”
frames, causing the slope to exhibit the requisite
behaviour. To avoid incorrectly declaring a cut in
such cases, we impose the condition that there must
be a large difference between the pre- and post-
frames. This is achieved by requiring the average
distance of the top N

2
frames to the query image to

be less than half the average distance of the bottom
N

2
frames from the same query image.
All comparisons so far have been relative. To

further reduce the occurrence of false positives, we
introduce an absolute threshold for the distance be-
tween the last pre-frame and the first post-frame.
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This is expressed as a proportion of the maxi-
mum distance possible between two frames using
the current feature and histogram representation.
We fixed this threshold at 25% of the maximum
possible distance.

To summarise, a cut is reported if the following
conditions are satisfied:

1. The NumPreFrames slope takes on a large neg-
ative value;

2. The top N

2
frames are significantly different

from the bottom N

2
frames; and,

3. The last pre-frame and the first post-frame are
significantly different.

Since these conditions are not synchronous, we al-
low them to be met at any point within an interval
of four frames. For example, the first condition may
be met at frame n, and the second condition may
be met at frame n + 2. If all three conditions are
met, we record a cut with the current frame being
the first frame of the new shot.

Detection of gradual transitions

Detection of gradual transitions is more difficult
than detection of abrupt transitions, and we need
to employ more heuristics. We experimented only
briefly with gradual transition detection in this
work and, as we show later, our detection of gradual
transitions is relatively ineffective. We plan further
experiments to determine the variation of parame-
ters required for improved detection of such transi-
tions.

We noted in Section 2.2 that during a gradual
transition, NumPreframes often rises to high levels,
then drops to low values, and remains there for a
some time before rising to return to typical levels.

We are alerted to a possible gradual transition
when we detect that NumPreframes has remained
low for several frames. We regard the current frame
as marking the end of the transition.

To identify the beginning of the transition, we
look back to find the location of the first phase
of the gradual transition, that is, the point where
NumPreFrames first rises to a high level designated
by the upper bound (UB).

Finally, we measure how long NumPreframes re-
mains high. If this is more than a threshold value,
we declare a gradual transition.

In summary, a gradual transition is reported if the
following conditions are met:

1. The NumPreFrames slope remains low for sev-
eral frames, and

2. before this, NumPreFrames increases to a high
level, and remains consistently high over sev-
eral frames.

If both conditions are met, we record a gradual
transition starting at the point NumPreFrames first
exceeds the upper bound, and ending at the current
frame.

3 Selection of features and parameters

To compare different features and identify suitable
parameters, the moving query window algorithm
was applied to detect shot boundaries on a subset
of the TREC-10 evaluation set comprising eleven
clips, containing a total of 996 cuts and 406 grad-
ual transitions. Each feature was evaluated using
parameters in the ranges shown in Table 1.

The effectiveness of the segmentation operation
is evaluated using the standard information re-
trieval measures of recall and precision. Precision
represents the fraction of detected transitions that
match the reference data:

P =
Transitions correctly reported

Total transitions reported

Recall measures the fraction of all reference transi-
tions that are correctly detected:

R =
Transitions correctly reported

Total reference transitions

These two measures can be used for both abrupt
and gradual transitions. To evaluate how well
reported gradual transitions overlap with refer-
ence transitions, TREC-11 introduced the mea-
sures Frame Precision (FP) and Frame Recall
(FR).

FP =
Frames correctly reported in detected transition

Frames reported in detected transition

FR =
Frames correctly reported in detected transition

Frames in reference data for detected transition
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Parameter Acronym Range start Range end Step size

Half window size (N

2
) HWS 6 30 2

Lower bound LB 1 4 1
Upper bound UB HWS − 4 HWS − 1 2
De-militarised zone DMZ 0 10 2

Table 1: The ranges of values used for the parameters of the shot boundary detection algorithm.

(a) (b) (c)

Figure 5: (a) Input frame of dimensions 352×240. (b) Frame Y (brightness) data placed in a super-frame
of dimensions 512×256, with the unused portion of the super-frame being set to black. (c) Transformed
super-frame; the data corresponding to the unused portion of the super-frame does not contain any
information, and is discarded.

3.1 Features

We used one-dimensional global histograms using
the HSV, Lab, and Luv colour spaces, and a fourth
feature derived from the Daubechies wavelet trans-
form of the frames. Preliminary experiments using
three-dimensional colour histograms have produced
slightly better results but we do not describe them
here.

The native colour space of the MPEG com-
pressed video stream is YCbCr. The wavelet-based
feature for each frame was generated by comput-
ing the six-tap Daubechies wavelet transform coef-
ficients from the YCbCr colour data. When calcu-
lating the wavelet transform using the Mallat al-
gorithm, the data dimensions are halved after each
pass [11, 21]. Thus, we can perform four passes on
frames with dimensions 352×240, ending at 22×15,
which cannot be transformed further. Frames with
dimensions 320×240 can also be transformed four
times (ending at 20×15), while frames with dimen-
sions 352×288 can be transformed five times (end-
ing at 11×9).

All clips used in TREC-11 had dimen-
sions 352×240; nevertheless, we should cater for
different frame sizes. To allow comparison of equiv-
alent wavelet scales for different-size frames with-

out the expense of resizing, we rearrange the frame
data to fit into a super-frame with dimensions that
are a power of two. For example, the pixel data
from a 352×240 frame is inserted into a super-
frame of dimension 512×256, as shown in Figure 5.
The unused portion of the super-frame is zero-filled,
and the transform data for this portion is later
discarded. With the new frame dimensions, eight
transform passes are possible, ending with the data
dimensions 2×1. We call this feature the wavelet
transform on re-ordered data RWav.

Of the feature combinations tried, RWav proved
to be the most effective for detecting cuts, and Luv
was the best feature to use for detecting gradual
transitions. The simple HSV feature also proved to
be effective, with recall and precision comparable
to those of the best features. The amount of pro-
cessing required to extract the HSV data from the
video stream is much less than the other features
under review. This low extraction cost may ren-
der HSV the most practical choice of feature for a
commercial system.

We found that while using only the luminance
component of the colour data trebles processing
speed, detection effectiveness is significantly re-
duced. An exception is the RWav feature, where
the effectiveness in detecting cuts with only lumi-

7



Cuts Bins/Subbands HWS LB UB DMZ
HSV 384 20 4 18 0
Lab 1536 26 3 24 4
Luv 1536 10 4 8 0
RWav 5 10 3 8 4

Gradual transitions Bins/Subbands HWS LB UB DMZ
HSV 48 20 4 18 4
Lab 192 22 3 20 4
Luv 1536 22 3 20 4
RWav 4 20 3 18 4

Table 2: The best set of parameters varies for each feature and transition type; gradual transitions are
generally best detected with a DMZ of four. The effect of varying the DMZ is less pronounced for cut
detection. While in some cases the best results are obtained with non-zero DMZ, the difference with the
DMZ=0 results is insignificant.

Distance Measure Cuts Gradual transitions
Manhattan 0.983 0.716
Cumulative Manhattan 0.928 0.563
Histogram Intersection 0.925 0.591
Euclidean 0.898 0.513

Table 3: Performance of different distance measures using the HSV colour feature and a subset of the
TREC-10 evaluation set. The simple Manhattan distance produces good results.

nance (Y) information is relatively unchanged from
the full YCbCr version.

Although the global colour features generally
produced good results, they often failed to detect
cuts between two shots of the same scene where the
camera followed an object moving rapidly against
a noisy background. This type of cut is often eas-
ily detected by the wavelet (RWav) feature, which
preserves spatial layout information.

Conversely, the wavelet feature is sensitive to
small changes in the frame content and performs
relatively poorly at finding gradual transitions.
However, the high-frequency data—corresponding
to detail in the image—plays an important part
in cut detection; we observe the best results when
using the first four or five transform sub-bands.
Further increasing the number of sub-bands inserts
too much detail, and adversely affects performance.
The volume of feature data stored per frame also
quadruples for each additional sub-band, and so a
performance penalty is also incurred.

3.2 Other parameters

The best choice of algorithm parameters varied for
different features and for the two transition types;
these are listed in Table 2.

We found that transitions are best detected with
a half window size (HWS) of approximately 18 or 20
frames. It is likely that the optimal value for HWS
will vary depending on the content of the footage
being examined; long, slow transitions will favour
larger values of HWS. We have not performed in-
depth experiments to test this supposition.

The lower bound (LB) and upper bound (UB)
determine the relative priorities of recall and pre-
cision. Decreasing LB towards zero generally in-
creases precision at the cost of recall. This effect
is relatively minor for cut detection, since in most
cases, NumPreFrames actually reaches zero at the
cut boundary. Detection of gradual transitions is
sensitive to the LB parameter, and our best prelim-
inary results were obtained with an LB of 3 or 4.

There is a close relationship between the best
choice of frame gap (DMZ) and the type of tran-
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sition to be detected. Cuts are generally best de-
tected with no gap at all (DMZ=0), while grad-
ual transitions are best found with a small gap
(DMZ=4). As with HWS, we believe the best value
is somewhat dependent on the type of video footage
being processed and we plan further experiments to
verify this.

As can be seen in Table 3, the Manhattan dis-
tance measure is the best among the four we ex-
perimented with. The relatively high computation
cost of the Euclidean distance measure makes it
unattractive for use in video.

4 TREC-11 Results

In TREC-11, groups were permitted to submit a
maximum of ten runs in the shot boundary detec-
tion task. The evaluation set consisted of eighteen
video clips, with 1 466 cuts and 624 gradual tran-
sitions. We submitted runs using the parameters
shown in Table 4.

The recall and precision levels obtained for de-
tection of cuts and gradual transitions are plotted
in Figure 6. The numbered squares and numbered
circles correspond to moving query window results
for abrupt and gradual transitions respectively. Re-
sults submitted to TREC-11 by other groups are
indicated by the small squares and circles. Simi-
larly, Figure 7 shows the performance of our ap-
proach and that of other systems when detecting
gradual transitions, as measured by Frame Recall
and Frame Precision.

The moving query window showed good results
on detection of cuts and poor results for gradual
transitions. Algorithm parameters that performed
well on abrupt transitions performed poorly on
gradual transitions, and vice versa. Run ten —
using the RWav feature — produced the best re-
sults for detection of abrupt transitions, but failed
to detect any gradual transitions.

5 Summary

We have introduced a new moving query window
approach that applies the CBIR concepts of query-
ing by example image and ranked results to de-
tect shot boundaries in video. We have described
the parameters of the algorithm, and discussed the
steps used to determine the presence of transitions.

We have identified several areas where modifica-
tions could lead to improved efficiency and effec-
tiveness. One improvement could be to preserve
some information about the spatial colour distri-
bution in the colour features; this can be done by
using local rather than global colour histograms.

Our algorithm is sensitive to sudden changes in
the video brightness level, photographic flashes,
and the appearance and disappearance of textual
captions. This sensitivity can be reduced by in-
tegrating existing work on detectors for such phe-
nomena [15, 23].

Populating the window requires that the algo-
rithm begin operation from the N

2
th frame, and

end N

2
frames before the end. Transitions occurring

within the excluded regions cannot be detected.
Other methods must be used to handle the approx-
imately half-second of footage at the extremities of
each clip.

The routines for detection of cuts and gradual
transitions are independent, and may interfere de-
structively; since the conditions to be met for cuts
are stricter than those for gradual transitions, we
made a decision to give precedence to cuts; if a cut
has already been detected in the transition interval,
the gradual transition is not reported. In addition,
we have not experimented in detail with the detec-
tion of gradual transitions and we plan future work
on selecting heuristics for this domain.

Overall, we have shown that our method pro-
duces competitive results. In particular, we have
shown that the RWav feature, derived from the
Daubechies wavelet transform of the frame data,
produces excellent cut detection results. Our pa-
rameters were based on experiments using a subset
of the TREC-10 evaluation set, and are therefore
not necessarily optimal for the TREC-11 evalua-
tion set. We expect that results can be improved
through experimentation with dynamic thresholds
and other adaptive parameters.
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Figure 6: Performance of the moving query window for cuts and gradual transitions on the TREC-11
shot boundary detection task.

Run Feature type Colour Vector Half window Lower Upper Demilitarised
space length size (HWS) Bound (LB) Bound (UB) Zone (DMZ)

1 Colour histogram HSV 384 20 4 18 0
2 Colour histogram HSV 96 20 3 16 4
3 Colour histogram Lab 1536 12 6 10 0
4 Colour histogram Lab 1536 26 3 24 0
5 Colour histogram Lab 1536 26 3 24 4
6 Colour histogram Luv 1536 10 4 8 0
7 Colour histogram Luv 1536 22 3 20 4
8 Colour histogram Luv 1536 26 3 24 4
9 Wavelet (5 scales) YCbCr 1176 10 3 8 0

10 Wavelet (5 scales) YCbCr 1176 20 3 18 0

Table 4: Parameters used for each submitted run.
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Figure 7: Performance of the moving query window for gradual transitions on the TREC-11 shot bound-
ary detection task, as measured by Frame Recall and Frame Precision.
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