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Abstract

In this paper, we describe the IBM Research system for
analysis, indexing, and retrieval of video, which was ap-
plied to the TREC-2002 video retrieval benchmark. The
system explores methods for fully-automatic content anal-
ysis, shot boundary detection, multi-modal feature extrac-
tion, statistical modeling for semantic concept detection,
and speech recognition and indexing. The system supports
querying based on automatically extracted features, mod-
els, and speech information. Additional interactive methods
for querying include multiple-example and relevance feed-
back searching, cluster, concept, and storyboard browsing,
and iterative fusion based on user-selected aggregation and
combination functions. The system was applied to all four
of the tasks of the video retrieval benchmark including shot
boundary detection, concept detection, concept exchange,
and search. In this paper, we describe the approaches for
each of the tasks and discuss some of the results.

1 Introduction

The growing amount of digital video is driving the need for
more effective methods for indexing, searching, and retriev-
ing video based on its content. Recent advances in content
analysis, feature extraction, and classification are improv-
ing capabilities for effectively searching and filtering digital
video content. Furthermore, the recent MPEG-7 standard
promises to enable interoperable content-based retrieval by
providing a rich set of standardized tools for describing fea-
tures of multimedia content [SS01]. However, the extrac-
tion and use of MPEG-7 descriptions and the creation of
usable fully-automatic video indexing and retrieval systems
remains a significant research challenge.
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The TREC video retrieval benchmark is allowing ad-
vances in the area of content-based retrieval by fixing
a video corpus and different query and detection tasks.
This allows experimentation with new video indexing tech-
niques, with consistent measures for assessing progress.
This year, we participated in the TREC video retrieval
benchmark and submitted results for four tasks: (1) shot
boundary detection, (2) concept detection, (3) concept ex-
change, (4) search. We explored several diverse methods
for video analysis, indexing, and retrieval, which included
automatic descriptor extraction, statistical modeling, and
multi-modal fusion. We conducted experiments that in-
dividually explored audio-visual and speech modalities as
well as their combination in manual and interactive query-
ing. In the paper, we describe the video indexing and re-
trieval system and discuss the results on the video retrieval
benchmark.

1.1 Outline

In this paper, we describe the video indexing and retrieval
system and examine the approaches and results on the
TREC-2002 video retrieval benchmark. The outline is as
follows: in Section 2, we describe the process for video
indexing including video content indexing and speech in-
dexing. In Section 3, we describe the video retrieval system
including methods for content-based search, model-based
search, speech-based search, and other methods for interac-
tive searching and browsing. In Section 4, we discuss the
approaches for each of the benchmark tasks and examine
some of the results.

2 Video indexing system

The video indexing system analyzes the video in an off-line
process that involves video content indexing and speech in-
dexing. The video content indexing process consists of shot
boundary detection, key-frame extraction, feature extrac-
tion, region extraction, concept detection, and clustering, as
shown in Figure 1. The basic unit of indexing and retrieval
is a video shot.

1



� � � �
� � � � � � 	

 � � � � � 


� � 	 �
� � � ���
� � � � � � � 


� � � � � � �
� � � � � � � 


��� � � � � �

 � � � � � 


��� � � � � �

 � � � � � 


� � � � � �
� � � � � � � 
� � !�"�#

$�% & ' ( ) * + , ( & - , . % /
0 1 2 % / &

34/ 5 & + % (
0 1 2 % / &

Figure 1: Summary of video content indexing process.

2.1 Shot boundary detection (SBD)

The shot boundary detection (SBD) is performed using the
real-timeIBM CueVideosystem [Cue] which automatically
detects shots and extracts key-frames. This year, we ex-
plored several methods for making SBD more robust to
poor video quality. Some of the methods include using
localized edge gradient histograms and comparing pairs of
frames at greater temporal distances. Overall, the 2002 sys-
tem showed reduction in SBD errors by more than 30%
compared to the 2001 SBD system [SSA+02].

The baseline CueVideo SBD system uses sampled, three-
dimensional color histograms in RGB color space to com-
pare pairs of frames. Histograms of recent frames are
stored in a buffer to allow a comparison between multi-
ple image pairs up to seven frames apart. Statistics of
frame differences are computed in a moving window around
the processed frame and are used to compute the adap-
tive thresholds, shown in Figure 2 as a line above the dif-
ference measures (Diff1, Diff3 and Edge1). A state ma-
chine is used to detect the different events (states). The
SBD system does not require any sensitivity-tuning param-
eters. More details about the baseline system can be found
in [SPA+99, SSA+02].

Several changes were incorporated to the baseline SBD
algorithm to accommodate lower video quality, such as for
the dated videos in TREC-02 data set. Localized edge-
gradient histograms were added to overcome color errors.
The 512-bin edge-gradient histogram counts the number
of pixels in each of eight image regions, having similar
Ix, Iy derivatives (each derivative is quantized into three
bits). Thus it is invariant to any global light and color
changes across the entire image. Rank filtering was added
in time/space/histogram at various different points along
the processing to handle the new types and higher levels
of noise. More comparisons of pairs of frames at distances
up to thirteen frames apart were added to overcome the high
MPEG-1 compression noise. Several new states were added
to the state machine to detect certain types of video errors
and to detect very short dissolves, 2-3 frames long. These
changes were evaluated using systematic precision-recall

measurements of many different variations of the system.
Evaluation was carried using two data sets, one consisting
of about half of the TREC01 test set with NIST ground truth
data, and the other with twelve video segments, each one
to two minutes long, taken from TREC02 training set for
which ground truth was generated manually.
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 Figure 2: Plot of frame-to-frame processing of the SBD al-
gorithm. Notice the ground truth (GT) and system output
(Sys) plots for this segment of video which has six dissolves
(one missed) and twelve cuts.

2.2 Feature extraction

The system extracts a number of descriptors for each video
shot. Some of the descriptors as indicated below are ex-
tracted in multiple ways from each key-frame image using
different normalization strategies (see [SN02]) as follows:
(1) globally, (2) based on 4x4 grid, (3) based on 5-region
layout, and (4) based on automatically extracted regions.
The following descriptors were extracted:

• Color histogram (global per key-frame, 4x4 grid, 5-
region layout, segmentation regions): one based on a
166-bin HSV color space [Smi01] and another based
on 512-bin RGB color space,

• Edge orientation histogram (global per key-frame, 4x4
grid, 5-region layout): based on Sobel filtered image
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and quantization to 8 angles and 8 magnitudes [SN02],

• Wavelet texture (global per key-frame, 4x4 grid, 5-
region layout): based on wavelet spatial-frequency
energy of 12 bands using quadrature mirror fil-
ters [Smi01],

• Color correlogram (global per key-frame, 4x4 grid,
5-region layout): based on a single-banded auto-
correlogram coefficients extracted for 8 radii depths in
166-color HSV color space [HKM+99],

• Co-occurrence texture (global per key-frame, 4x4 grid,
5-region layout): based on entropy, energy, contrast,
and homogeneity features extracted from gray-level
co-occurrence matrices at 24 orientations [JKS95],

• Motion vector histogram (global per shot, segmenta-
tion regions): based on8×8 motion estimation blocks
in the MPEG-1 decoded I and P frames. A six-bin his-
togram is generated based on the motion vector mag-
nitudes,

• Visual perception texture (global per key-frame,
segmentation regions): Three values representing
the coarseness, contrast, and directionality, respec-
tively [TMY78],

• Mel-Frequency Cepstral Coefficients (MFCC): trans-
formation of uncompressed PCM signal to 24 MFCC
features including the energy coefficient [RJ93].

2.3 Region extraction

In order to better extract local features and detect concepts,
we developed a video region segmentation system that au-
tomatically extracts foregreound and background regions
from video, as shown in Figure 3. The system runs in real-
time with extraction of foreground and background regions
from I-frames and P-frames in MPEG-1 video.

(a) (b)

Figure 3: Example region segmentation results (bounding
boxes of extracted regions): (a) background segmentation,
(b) foreground object segmentation.

The segmentation of the background scene regions uses
a block-based region growing method based on color his-

tograms, edge histograms, and directionality. The segmen-
tation of the foreground regions uses a spiral searching tech-
nique to calculate the motion vectors of I- and P- frames.
The motion features are used in region growing in the spa-
tial domain with additional tracking constraints in the time
domain. Although we tested MPEG-1 compressed-domain
motion vectors, we found them to be too noisy. We also
found that combining motion vectors, color, edge, and tex-
ture information for extraction of foreground objects did not
give significantly better results than using only motion in-
formation.

2.4 Clustering

We used the extracted visual descriptors (see Section 2.2) to
cluster the video shots into perceptually similar groups. We
used ak-means clustering algorithm to generate20 clus-
ters. We found color correlograms to achieve an excellent
balance between color and texture features. The clusters
were later used to facilitate browsing and navigation for in-
teractive retrieval (as described in Section 3.5).

2.5 Concept detection

The concept detection system uses the labeled training
video content to classify unknown video content (in our
case, the feature test and search test data). We have investi-
gated several different types of static models including Sup-
port Vector Machines (SVM) and Gaussian Mixture Models
(GMM).

2.5.1 Lexicon design

The first step in designing a semantic concept detection sys-
tem is the construction of a concept lexicon [NBS+02].
We viewed the training set video and identified the most
salient frequently occurring concepts and fixed a lexicon of
106 concepts, which included the 10 concepts belonging to
the TREC concept detection task (denoted as primary con-
cepts). Overall, we generated training and validation data
and modeled the10 primary concepts as follows: Outdoors,
Indoors, Cityscape, Landscape, Face, People, Text Overlay,
Music, Speech and Monologue and39 secondary generic
concepts as follows:

• Objects: Person, Road, Building, Bridge, Car, Train,
Transportation, Cow, Pig, Dog, Penguin, Fish, Horse,
Animal, Tree, Flower, Flag, Cloud,

• Scenes: Man Made Scenes, Beach, Mountain, Green-
ery, Sky, Water, Household Setting, Factory Setting,
Office Setting, Land, Farm, Farm House, Farm Field,
Snow, Desert, Forest, Canyon,

• Events: Parade, Explosion, Picnic, Wedding.
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Figure 4: VideoAnnEx MPEG-7 video annotation tool. The
system enables semi-automatic annotation of video shots
and editing of the lexicon.

2.5.2 Annotation

In order to generate training and validation data, we manu-
ally annotated the video content using two annotation tools1

– one produced the visual annotations and the other pro-
duced audio annotations. The IBM MPEG-7 Video Anno-
tation Tool (a.k.a. VideoAnnEx), shown in Figure 4, allows
the shots in the video to be annotated using terms from an
imported lexicon. The tool is compatible with MPEG-7 in
that the lexicons can be imported as MPEG-7 classification
schemes and generates MPEG-7 descriptions of the video
based on the detected shots and annotations. The tool also
allows the users to directly edit the lexicons.

IBM Multimodal Annotation Tool provides three modes
of annotation: video, audio with video, or audio without
video. The audio annotation is based upon audio segments
in which the user manually delimits each segment within
the audio upon listening and selects from the lexicon those
terms that describe the audio content. Multimodal concepts
(e.g. Monologues) are annotated using audio with video
mode of annotation.

2.5.3 Training and validation

Training and validation of models was done using the NIST
feature training data set. We randomly partitioned the NIST
feature training data set into a 19 hour Feature Training
(FTR) collection and a 5 hour Feature Validation (FV) col-
lection. We used the FTR collection to construct the models
and the FV collection to select parameters and evaluate the
concept detection performance. The validation process was
beneficial in helping to avoid overfitting to the FTR collec-
tion.

1Available at http://alphaworks.ibm.com

2.5.4 Concept modeling

We followed an approach of acheiving semantic concept de-
tection using a classification methodology (as investigated
in [NKFH98, NKH02, NBS+02]). The system learns the
parameters of the classifiers using training data for each
concept using statisical methods. We considered two ap-
proaches: one based on a decision theoretic approach and
the other based on a risk minimization approach.

Decision theoretic approach In this approach, the de-
scriptors are assumed to be independent identically dis-
tributed random variables drawn from known probability
distributions with unknown deterministic parameters. For
the purpose of classification, we assume that the unknown
parameters are distinct under different hypotheses and can
be estimated. In particular, each semantic concept is rep-
resented by a binary random variable. The two hypothe-
ses associated with each such variable are denoted byHi,
i ∈ {0, 1}, where0 denotes absence and1 denotes presence
of the concept. Under each hypothesis, we assume that the
descriptor values are generated by the conditional probabil-
ity density functionPi(X), i ∈ {0, 1}. The class condi-
tional densities conditional distributions over the descrip-
tors under the two hypotheses – concept present (H1) and
concept absent (H0) – are assumed to be generated by dis-
tinct mixtures of diagonal Gaussians in case of static con-
cepts. For dynamic concepts or events we assume that the
class conditional densities are generated by Hidden Markov
Models (HMM) [Rab89] with GMMs for the observation
densities [NKFH98]. The parameters of the GMMs (mean,
covariance, and mixture weights) are estimated by using
the Expectation Maximization (EM) [DLR77] algorithm. A
ranked list of confidence measures can then be generated
using the likelihood ratio test [Poo99].

Structural risk minimization Unlike the decision the-
oretic approach, the discriminant approach focusses only
on those characteristics of the feature set that discrimi-
nate between the two hypotheses of interest. The idea
of constructing learning algorithms based on the struc-
tural risk minimization inductive principle was proposed
in [Vap95]. Support vector machines (SVM) achieve dis-
crimination by mapping the feature vectors into a higher di-
mensional space through nonlinear function and construct-
ing the optimal separating hyperplane. Considering a set
of patterns{ ~x1, . . . , ~xn} with a corresponding set of labels
{y1, . . . , yn} wherey ∈ {−1, 1}. The idea is to use a non-
linear transformationΦ(x) and a kernelK(~xi, ~xj), such
that this kernelK can be used in place of an inner prod-
uct defined on the transformed non-linear feature vectors
< Φ(~xi),Φ(~xj) >. The optimal hyperplane for classifi-
cation in the nonlinear transformed space is then computed
by converting this constrained optimization problem into its

4



Classifier

1

Classifier

2

Classifier

N

Score

Normalization

Combiner

Function

Score

Normalization

Score

Normalization

INPUT Optimal

Selection

Figure 5: Three-stage normalized classifier fusion, which includes normalization of confidence socres, combination, and
selection.

dual problem, using Lagrange multipliers and then solving
the dual problem. If the non-linear transformationΦ()̇ is
chosen carefully, such that the kernel can be used to replace
inner product in the transformed space, then the operations
can be performed using the kernel in the original feature
space.

2.5.5 Fusion

Since no single descriptor is powerful enough to encom-
pass all aspects of video content and separate the concept
hypotheses, fusion is needed at several levels in the concept
modeling and detection processes. We experimented with
two distinct approaches involving early fusion and late fu-
sion. For early fusion we experimented with fusing descrip-
tors prior to classification. For the late fusion we experi-
mented with retaining soft decisions and fusing classifers.
In addition, we explored various combining methods and
aggregation functions for late fusion of search results as de-
scribed in Section 3.6.

Feature fusion The objective of feature fusion is to com-
bine multiple features at an early stage to construct a sin-
gle model. This approach is most suitable for concepts
that have sufficiently large number of training set examples
that are believed to be correlated and dependent. We ex-
perimented with feature fusion by simply concatenating de-
scriptors. Different combinations of descriptors were used
to construct models. We used the validation set to choose
the best combination.

Classifier fusion In an ideal situation, early fusion should
work for all concepts, since there is no loss of information.
However, practical considerations, such as limited number
of training examples, limited computational resources, and
the risk of overfitting the data, necessitate an alternate strat-
egy. If the features are fairly independent, then the loss of
information is not a concern. In such situations, we use

late fusion based on soft decisions that emanate from mod-
els constructed independently for individual feature types
or modalities. We used a separate model (SVM or GMM)
for each descriptor, which results in multiple classifications
and associated confidences for each shot depending on the
descriptor. While the classifiers can be combined in many
ways, we explored normalized ensemble fusion to improve
overall classification performance as shown in Figure 5.

The normalized ensemble fusion process consists of three
major steps, as shown in FIgure 5. The first step is score
normalization of resulting confidences from each classi-
fier. The second step is the aggregation of the normal-
ized confidence scores. The third step is the optimization
over multiple score normalization and fusion functions to
attain optimal performance against the validation set. In
the weighted average case we considered several general
weighting mechanisms, such as (1) inverse entropy, (2) in-
verse variance, and (3) model selection. For model selec-
tion we restricted the weights to be0 or 1 only, essentially
identifying high-performing and complementary subsets of
classifiers. Subsequently, an optimal selection of the best
performing normalized ensemble fusion is obtained by eval-
uating the performance measure against the ground truth of
the validation set. During the optimization stage we favor
fusion methods that generalize well in order to avoid over-
fitting the validation set.

2.5.6 Specialized detectors

Although we chose the generic above approaches for detec-
tion of most of the concepts, for two concepts (monologues
and text overlay) we explored specialized approaches.

Monologue detection For monologue detection, we first
performed speech and face detection on each shot. Then,
for shots containing speech and face, we further evaluated
the synchrony between the face and speech using mutual
information and used the combined score thus generated to
rank all shots in the corpus. Based on experimental results
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of a variety of synchrony detection techniques [NIN02], we
chose a scheme that models audio and video features as lo-
cally Gaussian distributions. Given a video shot, we ex-
tracted all the video frames corresponding to it and the as-
sociated audio. The audio features were segmented into lo-
cally Gaussian segments using a model selection based seg-
mentation scheme [CG98b]. For each such locally Gaus-
sian audio segment, we evaluated the mutual information
between every pixel in the video frames and the audio fea-
tures. To get a synchrony score from such a mutual infor-
mation image, we computed the ratio between the mutual
information of the face region and the average mutual infor-
mation across the entire image. Intuitively, the higher this
score the greater the synchrony between audio and video.

Text overlay detection We explored two algorithms for
extracted overlay text in video and fused the results of the
classifiers to produce the final concept labeling. The first
method (see [SDB98]) works by extracting and analyzing
regions in a video frame. The processing stages in this sys-
tem are: (1) isolating regions that may contain text charac-
ters, (2) separating each character region from its surround-
ings and (3) verifying the presence of text by consistency
analysis across multiple text blocks. A confidence measure
is computed as a function of the number of characters in text
objects in the frame. The second method uses macroblock-
based texture and motion energy. These features are used to
generate candidate text overlay regions. For each candidate
region, color layering in HSV color space is used to gener-
ate several hypothetical binary images; afterwards grouping
is performed on each binary image to connect and extract
character blocks using connected component analysis. Fi-
nally layout analysis is used to verify the layout of these
character blocks. A text region is identified if the character
blocks can be aligned to form sentences or words.

2.6 Speech recognition and indexing

As in TREC-2001, we constructed a speech-based system
for video retrieval. Significant improvements were made to
both the automatic speech recognition (ASR) performance
and the search engine performance relative to our TREC-
2001 submission.

2.6.1 Automatic speech recognition (ASR)

A series of increasingly accurate speech transcriptions for
the entire corpus were produced in the period leading up
to the evaluation. The first set of transcriptions were pro-
duced using an IBM real-time transcription system tuned
for Broadcast News; this is the same transcription system
as was used in TREC-2001 [SSA+02]. Later transcriptions
were produced using an off-line, multiple pass transcription
system comprising the following stages:

• Remove silent videos using the output of GMM-based
speech, music and silence detectors;

• Run per-video BIC-based segmentation to divide
each video into shorter segments suitable for decod-
ing [CG98a];

• Run music detection and silence detection over all
BIC segments and also automatically transcribe all
BIC segments using an IBM 10×Real-Time Broadcast
News transcription System; remove pure music and
silence segments, and adjust boundaries of retained
speech segments based on silence locations in the tran-
script;

• Supervised MLLR adaptation of speaker-independent
HUB4 models to TREC-2002 data using a set of
eight (word-level transcribed) videos from Feature-
Train [Leg95];

• Decode BIC “speech-only” segments using interpo-
lated trigram LM;

• Unsupervised clustering of BIC “speech-only” seg-
ments into “speaker- and environment- similar” clus-
ters [CG98a];

• Unsupervised MLLR adaptation of TREC-2002-
adapted HUB4 models to each cluster using single
global MLLR mean and precision transforms [Leg95].

The word error rate (WER) of the final transcripts is es-
timated at38.7% on a held out set of eight videos from
Search Test and Feature Test which were manually tran-
scribed2. This compares favorably to42.7% for the best
of the publically-released transcriptions on the same set and
represents a41% improvement over the transcriptions used
as the basis for IBM’s TREC-2001 SDR system.

2.6.2 Speech indexing

Indexes were constructed for SDR from the final most ac-
curate speech transcriptions. Three types of indexes were
generated: document-based indexes, an inverse word index,
and a phonetic index. No attempt was made to index the set
of silent videos.

Document-level indexes: the document-level indexes
support retrieval at the document level, where a document
is defined to span a temporal segment containing at most
100 words3. Consecutive documents overlap by 50 words

2Note this set does not overlap with the set used in supervised acoustic
model adaptation.

3Minor differences in document definition were used in constructing
the different indexes, such as whether or not documents boundaries are de-
fined at long stretches of silence or music; experiments suggest these dif-
ferences do not make a significant contribution to the differences in MAP
across systems.
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in order to address boundary truncation effects. Once doc-
uments are defined and their associated time boundaries are
recorded, the documents are preprocessed using (1) tok-
enization to detect sentence/phrase boundaries; (2) (noisy)
part-of-speech tagging such as noun phrase, plural noun
etc; (2) morphological analysis, which uses the part-of-
speech tag and a morph dictionary to reduce each word to its
morph eg. verbs[lands] , [landing] and[land] re-
duce to/land/ ; (4) “stop” words are removed using stan-
dard stop-word lists. After pre-processing, indexes are con-
structed and statistics (such as word and word pair term- and
inverse-document frequencies) are recorded for use during
retrieval.

Inverse word index: the inverse word index supports
Boolean search by providing the(videoi, timei) of all the
occurrences of a query term in the videos. Preprocessing of
transcripts is similar to that above.

Phonetic index: the phonetic index supports search of
out-of-vocabulary words. The (imperfect) speech transcript
is converted to a string of phones [AES01]. The phonetic
index can be searched for sound-like phone sequences, cor-
responding to out-of-vocabulary query terms such as some
acronyms, names of people, places, and so forth4

3 Video retrieval system

The video retrieval system provides a number of facilities
for searching, which include content-based retrieval (CBR),
model-based retrieval (MBR), speech-based search or spo-
ken document retrieval (SDR) and other interactive meth-
ods.

3.1 Content-based retrieval (CBR)

Content-based retrieval (CBR) is an important technique for
indexing video content. While CBR is not a robust sur-
rogate for indexing based on semantics of image content
(scenes, objects, events, and so forth), CBR has an impor-
tant role in searching. For one, CBR compliments tradi-
tional querying by allowing “looks like” searches, which
can be useful for pruning or re-ordering result sets based
on visual appearance. Furthermore, in many cases, multi-
example search and relevance feedback techniques are able
to learn semantics from features through training that results
from interactions with the user.

The objective of CBR is to match example query content
to target video content using the extracted descriptors (see
Section 2.2), as shown in Figure 6. The degree of match
is determined on basis of feature similarity, which we have

4For this year’s queries we found the phonetic index was of limited use:
only two queries involved out-of-vocabulary words, which were names.
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Figure 6: CBR matches example query content to target video
shots and returns scored results in rank-order.

measured using Minkowski-form metrics considering val-
ues ofr = 1 (Manhattan distance) andr = 2 (Euclidean
distance) as follows: given descriptors represented as multi-
dimensional feature vectors,vq andvt be the query and tar-
get vectors, respectively, then

dr
q,t = (

M−1∑
m=0

|vq[m]− vt[m]|r). (1)

Furthermore, in the case of histogram descriptors (eg., color
histograms, edge histograms – see Section 2.2), we use the
following class of normalizations, wherer = 1, 2, andh
corresponds to anM -dimensional histogram:

vr =
h

(
∑M−1

m=0 |h[m]|r)1/r
, (2)

which allows the comparison of images of different sizes.

3.2 Model-based retrieval (MBR)

Model-based search allows the user to retrieve video shots
based on the concept labels produced by the models (see
Section 2.5). In MBR, the user enters the query by typing
label text, or the user selects from the label lexicon. Since
a confidence score is associated with each automatically as-
signed label, MBR ranks the shots using a distanceD de-
rived from confidenceC usingD = 1− C.

3.3 Speech-based search (SDR)

Speech-based search allows the user to retrieve video shots
based on the speech transcript associated with the shots.
We used multiple SDR systems independently and com-
bined the results to produce the final SDR results for TREC-
2002; we refer to the three systems as OKAPI-SYSTEM-1,
OKAPI-SYSTEM-2, BOOLEAN-SYSTEM-1. To evaluate
different design decisions, a limited ground truth was cre-
ated for the combined FTR and FV collections by pooling
the results and performing relevance assessment.

7



Query development and preprocessing: All SDR sys-
tems operate using a textual statement of information need.
Query strings are preprocessed in a similar manner to the
documents: tokenization, tagging and morphing gives the
final query term sequence for use in retrieval.

Video segment retrieval: Given a query, the three SDR
systems rank documents or video segments as follows:

• OKAPI-SYSTEM-1, OKAPI-SYSTEM-2: a single
pass approach is used to compute a relevancy score for
each document. Each document is ranked against a
query, where the relevancy score is given by the Okapi
formula [RWSJ+95]. The total relevancy score for
the query string is the combined score of each of the
query terms. The scoring function takes into account
the number of times each query term occurs in the doc-
ument and how rare that query term is across the entire
corpus, with normalization based upon the length of
the document to remove the bias towards longer docu-
ments since longer documents are more likely to have
more instances of any given word.

• BOOLEAN-SYSTEM-1: a Boolean search was ap-
plied to Boolean queries. This search also supported
phonetic search of out-of-vocabulary words using the
phonetic index, in conjunction with in-vocabulary
words which can be located in the inverse word index.

Many SDR systems use the results of first pass retrieval
as the basis for automatic query expansion scheme prior to
running a second pass of retrieval. Experiments showed
little gain from using an LCA-based scheme [XC00] on
FTR+FV, since the number of relevant documents retrieved
per query in the first pass is quite low, so the approach was
not investigated further.

Video segment-to-shot mapping: NIST evaluate video
retrieval performance at the level of shots, rather than at
the level of documents or video sgments which span one
or more shots. Thus we must somehow use the scores as-
signed to documents or video segments by SDR to assign
scores at the level of shots5. The mappings used in the three
component systems are:

• OKAPI-SYSTEM-1: the score assigned to a document
is assigned to the longest shot overlapping that docu-
ment;

• OKAPI-SYSTEM-2: the score assigned to a document
is assigned to all the overlapping shots. A slightly
higher score given to the later shots than to the first
ones;

5Whilst this procedure might be simplified by defining documents in
a fashion more closely related to shot boundaries, our results to date have
found this to be less successful than the approaches discussed above.

• BOOLEAN-SYSTEM-1: First, the boundaries of the
video segment are determined by the coverage of the
relevant words. Then the overlapping shots are scored
the same way as with OKAPI-SYSTEM-2.

The video segment-to-shot mapping is critical to over-
all SDR performance. Post-evaluation experiments show
the schemes above were not optimal choices; for example,
since multiple relevant shots often overlap a single docu-
ment, OKAPI-SYSTEM-1 performance can be improved
simply by assigning a document score to all overlapping
shots. Our current research is investigating more sophisti-
cated schemes.

Fusion of multiple SDR systems: Analysis of the results
from the different systems shows that they are often comple-
mentary on FTR+FV: no system consistently outperforms
the others. Thus we hypothesized fusion of scores might
lead to improved overall performance. Whilst various fu-
sion schemes are possible, for TREC-2002 we use a simple
additive weighted scheme to combine shot-level, zero-to-
one range normalised scores from each of our basic SDR
systems. Weights can be optimised on FTR+FV prior to
the final run on (held-out) search test data. This combined
system is termed “SDR-FUSION-SYSTEM”.

3.4 Term vector search

We used term vectors constructed from the ASR text for
allowing similarity search based on textual content. Given
the entire collection of shots, we obtained a list of all of
the distinct terms that appear in the ASR for the collection.
The order of this list was fixed to give a one-to-one map-
ping of distinct terms and dimensions of the vector space.
Each shot was then represented by ann-dimensional vec-
tor, where the value at each dimension represented the fre-
quency of the corresponding term in each shot. This allows
the comparison of two shots based on frequency of terms.
We constructed several term vector representations based
on ASR-text.

3.5 Browsing and navigation

The system provides several methods for browsing and nav-
igation. For each video a story-board overview image was
generated that allowed its content to be viewed at a glance.
The system also generated these overview images for each
cluster (see Section 2.4) and each model (see Section 2.5).

3.6 Iterative fusion

The interative fusion methods provide a way for combining
and rescoring results lists through successive search opera-
tions using different combination methods and aggregation
functions defined as follows:
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Combination methods Consider results listRk for query
k and results listQr for current user-issued search, then the
combination functionRi = Fr(Ri−1, Qr) combines the re-
sults lists by performing set operations on list membership.
We explored the following combination methods:

• Intersection: retains only those shots present in both
results lists.

Ri = Ri−1 ∩Qr (3)

• Union: retains shots present in either results list.

Ri = Ri−1 ∪Qr (4)

Aggregation functions Consider scored results listRk

for queryk, whereDk(n) gives the score of shot with id =
n andQd(n) the scored result for each shotn in the current
user-issued search, then the aggregation function rescores
the shots using the functionDi(n) = Fd(Di−1(n), Qd(n)).
We explored the following aggregation functions:

• Average: takes the average of scores of prior results
list and current user-search. Provides “and” semantics.
This can be useful for searches such as “retrieve shots
that are indoorsandcontain faces.”

Di(n) =
1
2
(Di−1(n) + Qd(n)) (5)

• Minimum: retains lowest score from prior results list
and current user-issued search. Provides “or” seman-
tics. This can be useful in searches such as “retrieve
shots that are outdoorsor have music.”

Di(n) = min(Di−1(n), Qd(n)) (6)

• Maximim: retains highest score from prior results list
and current user-issued search.

Di(n) = max(Di−1(n), Qd(n)) (7)

• Sum: takes the sum of scores of prior results list and
current user-search. Provides “and” semantics.

Di(n) = Di−1(n) + Qd(n) (8)

• Product: takes the product of scores of prior results list
and current user-search. Provides “and” semantics and
better favors those shots that have low scores compared
to “average”.

Di(n) = Di−1(n)×Qd(n) (9)

• A: retains scores from prior results list. This can be
useful in conjunction with “intersection” to prune a re-
sults list, as in searches such as “retrieve shots of beach
scenes but retain only those showing faces.”

Di(n) = Di−1(n) (10)

• B: retains scores from current user-issued search. This
can be useful in searches similar to those above but
exchanges the arguments.

Di(n) = Qd(n) (11)

3.7 Normalization

The normalization methods provide a user with controls to
manipulate the scores of a results list. Given a scoreDk(n)
for each shot with id =n in results setk, the normalization
methods produce the scoreDi(n) = Fl(Di−1(n)) for each
shotn as follows:

• Invert: Re-ranks the results list from bottom to
top. Provides “not” semantics. This can be use-
ful for searches such as “retrieve shots that arenot
cityscapes.”

Di+1(n) = 1−Di(n) (12)

• Studentize: Normalizes the scores around the mean
and standard deviation. This can be useful before com-
bining results lists.

Di+1(n) =
Di(n)− µi

σi
, (13)

whereµi gives the mean andσi the standard deviation,
respectively, over the scoresDi(n) for results listi.

• Range normalize: Normalizes the scores within the
range0 . . . 1.

Di+1(n) =
Di(n)−min(Di(n))

max(Di(n))−min(Di(n))
(14)

3.8 Shot expansion

The shot expansion methods allow the user to expand a re-
sults list to include for each shot its temporally adjacent
neighbors. This can be useful in growing the matched
shots to include a larger context surrounding the shots, as
in searches such as “retrieve shots that surround those spe-
cific shots that depict beach scenes.”

3.9 Multi-example search

The multi-example search method allows the user to select
multiple positive example shots from a results list and is-
sue a query that is executed as a sequence of independent
searches using each of the selected shots. The user can
also select a descriptor for matching (such as those in Sec-
tion 2.2) and an aggregation function for combining and
rescoring the results from the multiple searches. Consider
for each searchk of K independent searches the scored
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result Sk(n) for each shotn, then the final scored result
Qd(n) for each shot with id =n is obtained using a choice
of the following fusion functions:

• Average: Provides “and” semantics. This can be useful
in searches such as “retrieve shots that are similar to
shot “A” andshot “B”.

Qd(n) =
1
K

∑

k

(Sk(n)) (15)

• Minimum: Provides “or” semantics. This can be use-
ful in searches such as “retrieve shots that are similar
to shot “A” or shot “B”.

Qd(n) = min
k

(Sk(n)) (16)

• Maximum:

Qd(n) = max
k

(Sk(n)) (17)

• Sum: Provides “and” semantics.

Qd(n) =
∑

k

(Sk(n)) (18)

• Product: Provides “and” semantics and better favors
those shots that have low scoring matches compared to
“average”.

Qd(n) =
∏

k

(Sk(n)) (19)

3.10 Relevance feedback search

Relevance feedback based search techniques enhance inter-
active search and browsing, where user feedback on a set of
shots is used to refine the search and retrieve in minimum
number of iterations the desired matches. The user implic-
itly provides information about the matches being sought
or query conceptby marking whether shots are relevant
or non-relevant in relation to his/her desired search output.
The system utilizes this feedback to learn and refine an ap-
proximation to the user’squery conceptand retrieve more
relevant video-clips in the next iteration.

We use a robust relevance feedback algorithm [AGG02]
that utilizes non-relevant video-clips to optimally delineate
the relevant region from the non-relevant one, thereby en-
suring that the relevant region does not contain any non-
relevant video-clips. A similarity metric estimated using
the relevant video-clips is then used to rank and retrieve
database video-clips in the relevant region. The partitioning
of the feature space is achieved by using a piecewise linear
decision surface that separates the relevant and non-relevant
video-clips. Each of the hyperplanes constituting the deci-
sion surface is normal to the minimum distance vector from

a non-relevant point to the convex hull of the relevant points.
With query concepts that can reasonably be captured us-
ing an ellipsoid in the feature space, the proposed algorithm
gives a significant improvement in precision as compared
to MARS ([RHM97]) and SVM-based relevance feedback
algorithms. The relevance feedback technique is computa-
tionally robust w.r.t. the size of feedback and distribution
of relevant and non-relevant video-clips. The relevant re-
gion is obtained as the result of intersection of half spaces
and hence forms a convex subset of the feature space. This
ensures that we can employ a quadratic distance metric to
rank and retrieve video-clips inside the relevant region. Rel-
evance feedback based search was performed using low -
level color histogram and edge orientation histogram fea-
tures extracted from keyframe images of video-clips.

3.11 Interface operations

The graphical user interface is shot/key-frame oriented in
that the unit of query, retrieval, and display is a video shot.
Figure 7 shows the key-frame display area (right-side) and
the system function buttons (left-side). Some of the opera-
tions that can be conducted on each shot, such as CBR, are
initiated using small buttons depicted below each key-frame
image.

Figure 7: Screen image of the video retrieval system.

3.12 Example searches

The video retrieval system allows the CBR, MBR, SDR,
and other methods of searching and browsing. The follow-
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ing pedagogical queries show how the facilities of the video
retrieval system can be used for querying for “beach” scenes
in the case of manual, interactive, and browsing-oriented
search.

Manual search Consider user looking for video shots
showing a beach scene. For manual search operations
the user can issue a query with the following sequence of
searches, which corresponds to the following query state-
ment (((beach color AND sky) AND water) OR beach
speech):

1. Search for images with color similar to example query
images of beach scenes,

2. Combine results with model = “sky” using “average”
aggregation function (Eq 6),

3. Combine with model = “water” using “product” aggre-
gation function (Eq 9),

4. Combine with ASR test = “beach” using “minimum”
aggregation function (Eq 6).

Interactive search On the other hand, for interative
search operations the user can issue the following sequence
of searches in which the user views the results at each
stage, which corresponds to the following query statement:
RFSEARCH(((EXPAND(beach speech) AND beach color)
AND sky) AND water):

1. Combine with ASR text = “beach”,

2. Expand results list to include adjacent shots using “ex-
pand” operation of Section 3.8,

3. Select those shots that best depict beach scenes and
search for target shots with similar color and com-
bine with previous results using “product” aggregation
function (Eq 9),

4. Combine with model = “sky” using “average” aggre-
gation function (Eq 6),

5. Combine with model = “water” using “product” aggre-
gation function (Eq 9),

6. Select positive and negative examples of beach scenes
and search for target shots using relevance feed-
back based on color and edges using method of Sec-
tion 3.10.

For interactive searching, a more browsing oriented ap-
proach can be taken as follows:

1. Browse the video overview story boards or clusters and
select the ones that best depict beach scenes,

2. Select positive and negative examples of beach scenes
and search for target shots using relevance feedback.

3. Repeat.

4 Tasks and results

We participated four tasks: shot boundary detection (SBD),
concept detection, concept exchange, and search.

4.1 Shot boundary detection (SBD) results

For the shot boundary detection task, the results of five sys-
tems were submitted, one of which was last year’s SBD sys-
tem as a baseline. A large difference in performance rela-
tive to last year was anticipated due to the degraded video
quality. The other four were different versions of the im-
proved system, mainly applying different logic to the fusion
of color histogram and the localized edges histogram infor-
mation. Three of them performed well and yielded very
similar results, while the forth one did not perform as well.
Table 1 summarizes the evaluation of the baseline system,
alm1, and the best new system,sys47, on last year’s and
this year’s TREC video data test sets. The results on TREC-
01 data set were computed by us, while the results for the
TREC-02 data set are taken from the official NIST TREC
2002 evaluation of those systems. Two additional rows are
provided on TREC-02 benchmark that compare our results
to the best and average systems, respectively, among the54
SBD runs submitted by TREC participants.

Video All Cuts Gradual Frame
Sys. Data Rc Pr Rc Pr Rc Pr Rc Pr

alm1 TR-01 .95 .88 .98 .97 .87 .68 .59 .93
sys47 TR-01 .96 .92 .99 .98 .89 .79 .66 .90
alm1 TR-02 .86 .77 .93 .80 .69 .71 .48 .94
sys47 TR-02 .88 .83 .93 .87 .76 .72 .57 .89
S-5 TR-02 .84 .89 .91 .94 .76 .78 .62 .90

mean TR-02 .76 .79 .86 .84 .53 .60 .55 .71

Table 1: Shot boundary detection results, comparing the
new system with last year system on both TREC-01 and
TREC-02 video data test sets. If all participating systems
are to be ranked byPrAll + RcAll then systemS-5would
be found the best one, provided here for comparison. Sys-
temmeanreflects the average of all 54 submitted systems.

As anticipated, the SBD performance on TREC-02 data
was lower than on TREC-01 data set. This was very no-
ticeable in other participating systems as well. Never-the-
less, the error rates of the new systemsys47were20− 36%
lower than of the baseline systemalm1 in almost all mea-
sures on both data sets. In order to find the main causes of
errors, a manual verification of all insertion errors reported
by NIST evaluation was done for two of the nineteen videos
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(36553.mpg and 08024.mpg). The breakdown of the sixty
insertion errors is summarized in Table 2.

Cause of insertion error freq. %
Fast motion 12 20%
Fast zoom 5 8%
Illumination changes 4 7%
Long grad reported as two 4 7%
MPEG video error 1 2%
others 7 12%
Short/long grad missmatch 12 20%
FOI reported as two (FO+FI) 7 12%
Missing cuts in ground truth 5 8%
Fade in at video start 2 3%
Fade out at video end 1 2%
Total 60 100%

Table 2: Shot boundary detection (SBD) insertion errors -
breakdown by cause.

Those errors can be divided into three group. The first
group is of objective errors (56%) which are due to system
fault. The second group is of subjective errors (32%) where
there was a (correct, in a sense) detection of an existing
boundary but it was not reported in the way defined by the
evaluation criteria. For example, an FOI was reported as
one FO and one FI, thus one was considered as an insertion
error. Or, a long dissolve was reported as a short one and
therefore was evaluated as one insertion error and one dele-
tion error (the five frames long threshold). The last group is
of ground truth errors (13%), mainly the five unlisted cuts,
and some fades at the beginning or the end of videos.

4.2 Concept detection results

Overall, concept detection results were submitted for ten
concept classes. The evaluation results are plotted in Fig-
ure 8, which shows shows Average Precision measured at a
fixed number of documents (1000 for the feature test set).
The “Average” bars correspond to the performance aver-
aged across all participants. The “Best” bars correspond
to the system returning the highest Average Precision. The
“IBM” bars correspond to IBM’s submitted concept detec-
tion run (priority=1). The IBM system performed relatively
well on the concept detection task giving highest Average
Precision on 6 of the 10 concepts6.

Detection experiments We experimented with different
kernels for non-linear projection in higher dimensional fea-
ture spaces. We used radial basis kernels as well as poly-
nomial kernels. For each feature type or combination of

6Top score is indicated only on five concepts. In our original submis-
sion to NIST, we mistakenly submitted the speech detection twice over-
writing our instrument detection result. However, the actual Average Pre-
cision of our instrument sound detector was 0.686, which was reported
through later communication with NIST.

NIST TREC 2002 Concept Detection Task
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Figure 8: Comparison of concept detection performance us-
ing average precision.

feature types, we constructed independent models for each
kernel (radial basis, polynomial). For each kernel we built
models for different values of the parameters constrained
within a reasonable range. For example, we varied theσ
value of the radial basis kernel from0.01 to1 in different in-
crements, evaluated the model atc values of1, 10 and100.
We also varied the penalty for missing positive examples
as against negative examples. For concepts with a small
number of positive examples, we also experimented with
downsizing the negative examples set for computational ef-
ficiency and to balance the ratio of positive to negative ex-
amples.

Each model was run on the validation set. The resulting
list was then sorted based on the distance of each validation
set example from the separating hyperplane. We thereby
used the SVM classifier to rank the validation set examples
such that if the example was far from the decision bound-
ary it was assumed to have been detected with greater confi-
dence. For each concept and each feature type/combination,
we then used the validation set to choose that parametric
combination which resulted in the highest non-interpolated
Average Precision. LetR be the number of true relevant
shots in a set of sizeS. Let L be the ranked list of returned
shots. At any given indexi let Ri be the number of relevant
documents in the topi documents. LetIj be an indicator
function withIj = 1 if the jth document is relevant and0
otherwise. AssumingR < S, the non-interpolated Average
Precision is then defined as

1
R

S∑

j=1

Rj

j
∗ Ij (20)

We also analyzed the precision recall curve before selecting
the final model.

Having selected a set of parameters for a feature type or
combination, for each concept, we then performed late de-
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cision fusion using normalized confidence scores. Again,
the final model was selected on the basis of its validation
set performance. For the auditory concepts (speech and
musicHMMs [INN02] were used to prototype the feature
distributions under both hypotheses. An HMM was used to
model each audio concept; each state in a given HMM has
the same observation distribution, namely the GMM trained
in the previous scheme. This can be viewed as imposition
of a minimum duration constraint on the temporal extent of
the atomic labels. Given a set of HMMs one for each au-
dio concept we used them to generate anN -best list at each
audio frame and then average these scores over the dura-
tion of the shot. We normalized these scores by dividing
each concept score with the sum of all the concept scores
in a particular shot. The scores are indicative of the relative
strengths of the different hypotheses in a given shot rather
than their absolute values.

4.3 Concept exchange results

Apart from running the primary and secondary detectors on
the search test set to assist the search task, we participated
in the concept exchange task by submitting results of eight
primary detectors on the search test set. We generated shot
based MPEG-7 descriptions for this exercise thus permit-
ting easy exchange of the detection results between partici-
pants.

4.4 Search results

The search task required retrieving video shots from the
search test collection for a given set of query topics. We
investigated both manual and interactive methods of search-
ing. We submitted four runs of all 25 query topics using the
content-based, model-based, speech-based, and interactive
search methods described above. Table 3 summarizes the
results for the four search runs.

System Type Code MAP

CBR Manual M B M 1 0.006
SDR Manual M B M-2 2 0.136
CBR+SDR Manual M B M-3 3 0.093
CBR+SDR Interactive I B M-4 4 0.244

Table 3: Summary of search results for four submitted runs.

4.5 Manual CBR

The manual CBR run consisted of mapping the query topics
into one or more content-based or model-based queries and
fusing the results in a predetermined fashion. As described
in Section 2.2, CBR was based on a variety of descriptors.
The manual CBR run was generated by allowing the fol-
lowing operations to answer each query topic:

1. Issue a content-based search by selecting one or more
query examples, a feature type, and a fusion method,
as necessary;

2. Issue a model-based search by selecting one or more
concept models, a fusion method, and model weights,
as necessary;

3. Fuse results lists from one or more content-based or
model-based search by selecting a fusion method.

For example, the following sequence of operations was
executed for Query 79:People spending leisurely time at
the beach:

1. Pick examples 0, 1, 4, 8, 12, 23, 29 from query content
set

2. Perform CBR search with edge histogram layout using
“minimum” fusion (Eq 16)

3. Combine with “Landscape” model using “intersec-
tion” combining method (Eq 3) and “product” aggre-
gation function (Eq 9).

The exact mapping of query topics into a fixed sequence
of the above operations was performed manually by visu-
ally optimizing performance over the FTR and/or FV col-
lections without knowledge of the search test collection.
Once a query topic was mapped to system operations, the
operations were applied to the search collection by a desig-
nated person who did not participate in the mapping process
or have prior knowledge of the search test collection. Fig-
ure 9 and Figure 10 show results of manual CBR searches.
Figure 9 shows the results for topic76, which is looking for
shots depicting “James Chandler.” As shown, some matches
are found in the results list, however, many shots of “James
Chandler” are not retrieved using CBR. Figure 10 shows the
results for topic80, which is looking for shots of musicians.
As shown, many of the matches correspond to musicians.
This query used instrument concept detector in addition to
other models.

With respect to performance, it was our experience that
the TREC 2002 query topics were at a higher semantic level
than what CBR can handle. While CBR and semantic mod-
eling are generally able to capture low- to mid-level seman-
tics, they are fairly limited in the case of only a few query
examples or mid- to high-level semantics. We found that
purely CBR worked best for refining candidate lists gen-
erated from semantically rich sources, such as speech, or
explicit semantic models that closely match the query need.
For example, refining the face model by cross-comparison
with examples images of “James Chandler” did produce a
few relevant hits near the top (see Figure 9). Model-based
retrieval on the other hand worked well when the query
topic was a close match to an existing model and was built
with sufficient training data, such as the “musician” topic
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Figure 9: Results for topic 76: James Chandler.

Figure 10: Results for topic 80: Musicians.

(see Figure 10). However, in the case of limited example
content, such as of query topic looking for “butterflies”,
or given a lack of closely related explicit semantic mod-
els, CBR and MBR techniques alone are not sufficient. In
addition, some of the query topics were so general (e.g.,
beach query) or specifiec (e.g., Price Tower query) that it
is doubtful whether any reasonable discrimination can be
done using low-level features alone.

4.6 Manual SDR

Manual searching using spoken document retrieval (SDR)
was based on the indexed speech information. We explored
multiple methods of SDR and their fusion, where the SDR
queries were developed through interaction with the Feature
Training collection.

Query strings were created manually for each query.
Queries derived from the audio and textual statement of in-
formation need supplied by NIST were expanded by hand
in ad-hoc fashion based on retrieval on the FTR+FV sets7.
More complicated query strings are used in the Boolean
system, since it was hypothesized that the Boolean retrieval
would be less susceptible to the effects of query overtuning
on FTR+FV.

The query terms used in the submitted multiple-SDR fu-
sion system for topic 90 (“Find shots with one or more
snow-covered mountain peaks or ridges. Some sky must
be visible behind them”) were “ice snow covered mountain
peaks valley vista”. Twenty relevant items were retrieved
in the top 100, with Average Precision0.12. For topic
84 (“Find shots of Price Tower, designed by Frank Lloyd
Wright and built in Bartlesville, Oklahoma”) the query
terms are “Price Tower Frank Lloyd Wright Bartlesville Ok-
lahoma”, the top three items recalled are relevant and Aver-
age Precision is0.75.

Weights for the SDR-FUSION-SYSTEM were optimised
using the limited ground truth that was compiled for
FTR+FV. As expected, this scheme led to Mean Aver-
age Precision (MAP) improvements FTR+FV; more impor-
tantly, fusion gave performance improvements (35%) over
our best single SDR system on the unseen search test data
(as shown in Table 4). Note that simple post-evaluation
changes in the video segment-to-shot mapping scheme im-
proved the performance of the individual OKAPI systems
(eg. OKAPI-SYSTEM-1 increased to MAP0.114) and the
fusion system performance might be expected to improve
further as the component systems improve. The results
overall are a significant improvement over those for IBM’s
speech-only retrieval submission to TREC-2001.

System MAP

OKAPI-SYSTEM-1 0.073
OKAPI-SYSTEM-2 0.093
BOOLEAN-SYSTEM-1 0.101
SDR-FUSION-SYSTEM 0.137

Table 4: Search test performance of component and fusion
SDR systems

The OKAPI-SYSTEM-1 was used to investigate effects
of increasing speech transcript accuracy, by indexing tran-

7Later experients showed that, at least in OKAPI-SYSTEM-1, the gains
due to the manual query expansion were negligible.
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scripts of varying accuracy for the FTR+FV set for which
we have compiled limited ground truth. Table 5 shows the
results: a consistently increasing MAP with increasing tran-
script % Correct, which justifies our greater investment of
effort in ASR this year. However, this result also suggests
that we may not have reached an error rate at which retrieval
is comparable to retrieval from ground truth transcriptions.
We hope to compile a complete set of ground truth speech
transcripts for the TREC-2002 videos that will allow us to
answer this question.

Transcript % Correct MAP

52.8% 0.09
59.7% 0.13
67.9% 0.17
72.8% 0.21

Table 5: Relationship between Transcript Accuracy and Re-
trieval Performance

4.7 Manual CBR and SDR

The combination of CBR and SDR was explored for man-
ual searching, where queries were developed through inter-
action with the Feature Training collection. An example
of (successful) SDR and CBR integration is query topic 86
(“find overhead views of cities - downtown and suburbs; the
viewpoint should be higher than the highest building visi-
ble”). In the following, we assume that the SDR results and
CBR results have been found independently prior to the in-
tegrated query:

1. Retrieve results for SDR query of “view panorama
overhead downtown suburbs city town urban”

2. Expand results list to include adjacent shots (repeat
two times) using expand operation (see Section 3.8)

3. Combine with CBR results using “union” combina-
tion method (Eq 4) and “product” aggregation function
(Eq 9).

The final Average Precision improved from CBR0.0 and
SDR 0.039 to CBR+SDR0.057. A similar approach was
used for the other queries with minor differences such as
the number of shot expansions and the choice of the com-
bination method and aggregation function, for example, us-
ing “intersection” rather than “union” and “sum” rather than
“product”. However, this approach was not always success-
ful; for example, the same scheme was used for topic 84
(“Price Tower”) SDR+CBR but performance was degraded
below that obtained using SDR alone. This approach to
SDR and CBR integration improved four queries beyond
the performance attained with SDR alone.

4.8 Interactive search

We explored interactive search using CBR and SDR in
which the user interacted with the search test collection at
query-time, we chose various combinations of these meth-
ods and selected among different methods for fusion, mul-
tiple examples search, relevance feedback, and browsing.
The wall-clock time was measured to gauge the user effort
for each interactive query. The following describes the in-
teractive search operations for query topic 89 for “Butter-
flies”, which took just over seven minutes of user time:

1. Search for shots of butterflies using SDR with terms
such as “monarch”, “butterfly”, “wings”, “flower”.

2. View grouping of results by video (clusters shots ac-
cording to source video) to get idea of which videos
contribute which shots

3. Remove two unrelevant shots at top of results list

4. Expand all shots to adjacent shots

5. Results show 5 hits at the top, stop.

5 Summary

We presented the IBM Research video indexing system.
The system explores fully-automatic content analysis meth-
ods for shot detection, multi-modal feature extraction, sta-
tistical modeling for semantic concept detection, and speech
recognition and indexing. The system supports manual
methods of querying based on automatically extracted fea-
tures, models, and speech information. In this paper we
described the system and the experiments runs are part of
the TREC-2002 video retrieval benchmarking effort. The
results show good performance on tasks such as shot bound-
ary detection, concept detection, and search.
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ing data sets.
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