CDVP & TRECVID-2003 News Story Segmentation Task

Csaba Czirjek, Gareth J.F. Jones, Seán Marlow, Noel Murphy, Noel E. O'Connor, **Neil O'Hare**, Alan F. Smeaton

Contents

- Introduction
 - Structure of News Broadcast
 - System Overview
- Story Segmentation System
 - Feature Extraction Process
 - Combination of Features using Support Vector Machine
 - Submitted Runs
- Results
- Conclusions

Structure of a News Broadcast

We assume stories are delimited by shots of the anchorperson

- Features of Anchor shots:
 - All anchor shots within a broadcast taken from the same camera setup
 - filmed with a static camera, with little object motion
 - anchor shots in a single broadcast are visually similar to each other

Structure of a News Broadcast

System Overview

- We use TRECVID 2003 common shot boundary provided by CLIPS-IMAG
- Extracted features combined to detect anchor shots
- Story boundaries logged at the start of anchor shots
- Aim is to extract features that are robust to changes across broadcasters (eg faces, motion, shot length)
- This would give a generic news segmentation system

System Overview

Feature Extraction 1 - Shot Clustering

- Shots are clustered based on visual similarity (colour histogram)
- anchor shots grouped together
- anchor clusters identified using heuristics:
 - tend to be dispersed throughout the broadcast
 - average length longer than others
 - anchor shots are very similar to each other: they form 'tighter' clusters

Feature Extraction 2 - Face Detection

- Coarse to fine approach to extract candidate regions:
 - Skin like pixels identified based on colour
 - Morphological filtering used to obtain smoothed areas of connected pixels
 - Shape and size heuristics remove candidate face regions
- Candidates passed to a Principle Component Analysis (PCA) module for final classification
- Every 12th frame (I-frames) used for processing

Face Detection

Feature Extraction 3 - Activity Measure

- Motion Activity analysis based on MPEG-1 motion vectors
- Every P-frame is analysed
- We count the number of zero length motion vectors in a P-frame (excluding I-blocks)
- Activity measure:

No. of zero length vectors

Total No. of macroblocks

Feature Extraction 3 - Activity Measure

- Two separate shot level measures used:
 - least active P-frame is used to represent the shot
 - All motion vectors across a shot are added to form a cumulative motion vector. Activity measure then calculated using cumulative motion vector

frame a

0,-1	0,1	-3,5
0,0	0,0	4,3
-2,1	1,-1	1,0

frame b

0,1	1,0	-2,4
3,0	0,0	0,0
-2,1	0,1	0,1

frame a + frame b

0,0	1,1	-5,9
3,0	0,0	4,3
-4,2	1,0	1,1

Feature Extraction 4 - Shot Length

- Shot length used as a feature
- Measured in frames

Feature Extraction 5 - Text Analysis

- To allow us to complete the required runs, we used text analysis provided by StreamSage
- StreamSage text output used as binary feature

Combination of Features - SVM

- Extracted features combined using Support Vector Machine
- Trained on 10 hours of the TRECVID 2003 development set (5 CNN, 5 ABC)
- Resulting SVM classifier detects anchor shots
- Story boundaries are logged at the beginning of anchor shots

Submitted Runs

3 Required Runs

- A/V only system generic system for ABC and CNN (DCU03_REQ_AV)
- A/V + text generic system for ABC and CNN (DCU03_REQ_AV_TEXT)
- Text only text Analysis provided by StreamSage (DCU03_REQ_TEXT_ONLY)

2 Additional Optional Runs

- Specialised systems for ABC and CNN.
 Separate SVMs for each broadcaster (DCU03_OPT_AV)
- Clustering algorithm in isolation (DCU03_OPT_CLUSTER)

DCU Results

System ID	Recall	Precision
DCU03_REQ_AV	0.328	0.409
DCU03_REQ_AV_TEXT	0.294	0.453
DCU03_REQ_TEXT_ONLY	0.049	0.208
DCU03_OPT_AV	0.313	0.453
DCU03 OPT CLUSTER	0.364	0.304

Overall Results - All Groups

Conclusions

- Best results from specialised system (DCU03_OPT_AV)
- generic system not far behind
- Extracted features robust across broadcasters
- Combined results improve precision with small loss in recall compared to clustering alone

