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Abstract

In this paper, we present a framework for analyzing video using self-
similarity. Video scenes are located by analyzing inter-frame similarity
matrices. The approach is flexible to the choice of similarity measure and
is robust as the data is used to model itself. We present the approach and
its application to scene boundary detection.

1 Introduction

Video segmentation is an increasingly important problem. Numerous video
retrieval and management tasks rely on accurate segmentation of scene bound-
aries. In this paper, we describe a framework for video analysis based on inter-
frame similarity. This approach facilitates scene boundary detection and other
video characterizations. A particular benefit of this work is that it effectively
uses the signal to model itself, making minimal assumptions about the nature
or genre of the target video.

2 Similarity Analysis

We detect scene boundaries by considering the self-similarity of the video across
time. For each instant in the video, the self-similarity for past and future regions
is computed, as well as the cross-similarity between the past and future. A
significantly novel point in the video, i. e. a scene boundary, will have high
self-similarity in the past and future and low cross-similarity between them.

Video frames are parameterized and are then embedded in a 2-dimensional
representation [1]. Figure 1 shows how the distance measure is embedded. A
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Figure 1: Diagram of the similarity matrix embedding.

measure D of the (dis)similarity between frame parameters ~vi and ~vj is calcu-
lated for every pair of video frames i and j. The matrix S contains the similarity
measure calculated for all frame combinations i and j such that the (i, j)th el-
ement of S is D(~vi, ~vj). Time, or frame index, runs along both axes as well as
the diagonal. In general, S will have maximum values on the diagonal (because
every frame will be maximally similar to itself); furthermore if D is symmetric
then S will be symmetric as well. An advantage of this approach is that the
exhibited structure is derived entirely from the current video rather than from
predefined models or parameterizations. There are minimal prior assumptions
regarding the video content, which is an essential requirement for numerous
applications.

3 System description

3.1 Computing the Similarity Matrix

Each frame is parameterized by features based on low-order discrete cosine
transform (DCT) coefficients. Instead of intensity histograms, this implementa-
tion processes every 10th frame and transforms the individual RGB frames into
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In this color space, the three channels are approximately decorrelated [2]. The
DCT of each channel is computed and a feature vector is formed by concatenat-
ing the resulting low frequency coefficients of the three channels. These feature
vectors are compared using the cosine distance measure and Algorithm 1 is
used to compute the scene boundaries. These features are compared using the
(nonlinear) cosine distance measure

S(i, j) = D(~vi, ~vj) =
< ~vi, ~vj >

‖~vi‖ ‖~vj‖
. (2)

S can be visualized to let us clearly identify structure within a video. Re-
gions of high similarity, such as a long sequence of identical frames, appear
as bright squares on the leading diagonal. Repeated sequences are visible as
diagonal stripes or checkerboards, offset from the main diagonal by the repeti-
tion time. For example, the similarity matrix of Figure 2 (a) is from the video
“19980203 CNN.mpg” from the 2003 test set (SB03). There are cuts at frames
1496, 1567, 2374, and 2564. There are dissolves from frames 1124–1132 and
1641–1653.

Figure 2: The figure shows a similarity matrix computed per Algorithm 1.

3.2 Scene Segmentation Via Kernel Correlation

The similarity matrix of Figure 2 exhibits the segment structure of the source
video. Frames 1132–1496 show high within-segment similarity in the corre-
sponding square region along the leading diagonal. At frame 1496 there is a
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cut. The frames from 1496 – 1567 comprise the next segment, also exhibiting
high similarity along the main diagonal. At the same time, the rectangular
region off the leading diagonal (bounded by rows 1132–1496 and columns 1496–
1567) show low (inter-segment) similarity. This forms a checkerboard with crux
at element (1496,1496). This observation suggests that finding the scene bound-
ary transitions is as simple as finding the checkerboards along the main diagonal
of S. This can be done using a classic matched filter: correlating S with a ker-
nel that itself looks like checkerboard [1]. We will call this class “checkerboard”
kernels.

For automatic scene segmentation, we correlate the Gaussian checkerboard
kernel of Figure 3 along the diagonal of the similarity matrix S. The result
is a one-dimensional function of time (frame index). Intuitively, the correla-
tion emphasizes regions with strong self-similarity while penalizing regions with
significant cross-similarity.
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Figure 3: The figure shows a similarity matrix computed per Algorithm 1.

3.3 Varying the kernel width

The width of the checkerboard kernel determines the sensitivity of the novelty
score to segments of different lengths. To take a multi-scale approach we com-
pute novelty scores using a range of kernels with varying width. This is similar
to scale-space analysis [3], but includes second order information off the main
diagonal of the kernel. It is also somewhat in the spirit of the multi-scale work
at TREC by Pickering et al. [4]. Figure 4 shows novelty scores computed using
several kernels with widths between 4 and 16. Note that the cuts in the video
exhibit sharp peaks at all scales while the gradual transitions show shorter,
broader peak structure. We have built a heuristic-based system to exploit these
differences in the novelty features to detect cut and gradual transitions for the
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TREC competition. Because of intellectual property concerns, we can not de-
scribe the system in any additional detail at present.

Algorithm 1 Self-Similarity Based Scene Change
Localization

1. Compute cosine similarity matrix

(a) Transform every tenth frame from RGB to intensity (greyscale) image

(b) Compute histogram of intensity image

2. Compute correlation along diagonal of similarity matrix with Gaussian
checkerboard kernel (Figure 3(c))

3. Locate peaks via analysis of the first and second differences of the output
signal

4. Label peaks as scene boundaries

Figure 4: The figure shows novelty scores computed with varying kernel widths
from the matrix of Figure 2.

4 Experiments

5 Conclusion

We have presented a novel video segmentation algorithm and demonstrated its
performance. Better features based on color and shape further improved the
segmentation. Though on first inspection it seems that Algorithm 1 requires
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O(n2) computations, this is not the case in practice. For segmentation, there is
no reason to calculate similarity matrix values further from the diagonal than
the extent of the kernel, which is typically a small constant. Thus the algorithm
can be computed in O(n) computations, and can be computed on-the-fly as
long as a small frame buffer (the size of the kernel) is available. Additionally,
because both the similarity matrix and the kernel will typically be symmetric,
many computations are redundant: only one half of the matrix and the kernel
need be computed and correlated. Thus the algorithm is quite competitive with
seemingly simpler approaches such as histogram differences.
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