Rushes Summarization by *Object* and *Event* Understanding

Feng Wang and Chong-Wah Ngo City University of Hong Kong

Rushes Summarization

- Movie product
 - Captured by profession cameraman
 - Edited by expert
- Home video
 - Many junk shots, intermediate camera motion
 - Unedited
- <u>Rushes ...?</u>
 - Like a *mixture* of movie product and home video
- We focus on:
 - Object / Event detection and understanding
 - Audio-visual representability score for clip selection

Redundancy removal

- Junk shot: color bars, grayscale/black frames
- Intra-shot: story-irrelevant scenes
- Inter-shot: retakes
- > Summary generation
 - Object / Event detection and understanding
 - Select the most representative video clips

Junk Shot Filtering

- Shot detection
 - C. W. Ngo et. al., "Video Partitioning through Temporal Slices Analysis", CSVT 2001.

Junk shots

- <u>Redundancy removal</u>
 - Junk shot: color bars, grayscale/black frames
 - Intra-shot: story-irrelevant scenes
 - Inter-shot: retakes
- Summary generation
 - Object / Event detection and understanding
 - Select the most representative video clips

Intra-Shot Redundancy Removal

- Separate movie storytelling from irrelevant scenes
 - ✓Cut-board scene
 - ✓Camera motion
 - ✓Audio

Cut-board Detection

- Near-Duplicate Keyframe Matching
 - W. L. Zhao, C. W. Ngo, H. K. Tan, and X. Wu, "Near-Duplicate Keyframe Identification with Interest Point Matching and Pattern Learning", *IEEE Trans. on Multimedia*, 2007.

Detected cut-board scenes in test videos

Example cut-board scenes from development set

- Speech Recognition
 - "Shot xx", "Take yy" 🔌

Unintentional Camera Motion Filtering

- <u>Stock:</u>
 - Intentional
 - Useful
- <u>Outtake:</u>
 - Intermediate
 - To be discarded
- <u>Shaky:</u>
 - Either useful or not useful

outtake

 C. W. Ngo, Z. Pan & X. Y. Wei,
 "Hierarchical Hidden Markov Model for Rushes Structuring and Indexing", *CIVR* 2006.

outtake

Audio

- Speech recognition
 - "Action", "Cut", "Standby"
- Audio scene changes
 - Cepstralflux, multi-channel cochlear decomposition, cepstral vector, low energy fraction, volume standard deviation, non-silence ration, pitch and zero crossing rate

Silence, Actor's lines, Noise

Video "MS044500"

- <u>Redundancy removal</u>
 - Junk shot: color bars, grayscale/black frames
 - Intra-shot: story-irrelevant scenes
 - Inter-shot: retakes
- Summary generation
 - Object / Event detection and understanding
 - Select the most representative video clips

Inter-shot Redundancy Removal

- Keyframe matching
- > Remove incomplete shots
- > Heuristically select the last one of many retakes

- <u>Redundancy removal</u>
 - Junk shot: color bars, grayscale/black frames
 - Intra-shot: story-irrelevant scenes
 - Inter-shot: retakes
- Summary generation
 - Object / Event detection and understanding
 - Select the most representative video clips

Object and Event Detection

- > A set of objects: $O = \{o_i\}$
- > Object motion activities: $\Phi = \{\varphi_j\}$
- > Scene changes: $\Delta = \{\delta_t\}$
- > Camera motion: $\Gamma = \{\gamma_k\}$
- > Speech/dialogue event: $\Omega = \{\omega_m\}$

vanish

appear

- <u>Redundancy removal</u>
 - Junk shot: color bars, grayscale/black frames
 - Intra-shot: story-irrelevant scenes
 - Inter-shot: retakes
- Summary generation
 - Object / Event detection and understanding
 - Select the most representative video clips

Video Clip Representability

• The representability of a video clip *v* for the objects and events at time (t_1, t_2)

$$\begin{aligned} R_{v}(O) &= \sum_{o \in O} \int_{t_{1}}^{t_{2}} (1 - \frac{|t - (t_{so} + t_{eo})/2|}{t_{eo} - t_{so}}) dt \\ R_{v}(\Phi) &= \frac{\sum_{\phi \in \Phi} \int_{t_{1}}^{t_{2}} f(t) dt}{\sum_{\phi \in \Phi} \int_{t_{s\phi}}^{t_{e\phi}} f(t) dt} \\ R_{v}(\Gamma) &= \sum_{\gamma \in \Gamma} \int_{t_{1}}^{t_{2}} (1 - \frac{|t - (t_{s\gamma} + t_{e\gamma})/2|}{t_{e\gamma} - t_{s\gamma}}) dt \\ R_{v}(\Delta) &= \frac{\int_{t_{1}}^{t_{2}} \delta(t) dt}{\int_{t_{s\delta}}^{t_{e\delta}} \delta(t) dt} \\ R_{v}(\Omega) &= \frac{||W(v) \bigcap W(\Omega)||}{||W(\Omega)||} \end{aligned}$$

• The representability of video $\operatorname{clip} v_i$ for v_j

$$Rep(v_i, v_j) = \frac{1}{\sqrt[4]{d(v_i, v_j)}} \cdot (w \circ R_{v_i}(O_{v_j}) + w \Phi R_{v_i}(\Phi_{v_j}) + w_{\Gamma} R_{v_i}(\Gamma_{v_j}) + w_{\Delta} R_{v_i}(\Delta_{v_j}) + w_{\Omega} R_{v_i}(\Omega_{v_j}))$$

$$(1)$$

5

Representative Clip Selection

Representability <u>C</u> Α Β score of clips time <u>C</u> Α B

Result

Video summary for the rushes video 'MRS044500':

DU	36.50
XD	14.80
TT	66.67
VT	38.00
IN	0.42
EA	3.00
RE	2.67

Object: 85 # Event: 134

Conclusion

- Object and event understanding
 - provide a promising approach for semantic-based video summarization
 - excellent at describing storyline of movies
- Domain knowledge
 - redundancy removal: outtake, shaky, cut-board, speech,
- Generalization to other domains
 - object/event understanding
 - representability score
- Future work
 - more on event analysis

Thanks!

Q&A?