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Abstract

The Informedia group participated in four tasks this year, including Semantic in-
dexing, Known-item search, Surveillance event detection and Event detection in
Internet multimedia pilot. For semantic indexing, except for training traditional
SVM classifiers for each high level feature by using different low level features,
a kind of cascade classifier was trained which including four layers with different
visual features respectively. For Known Item Search task, we built a text-based
video retrieval and a visual-based video retrieval system, and then query-class
dependent late fusion was used to combine the runs from these two systems. For
surveillance event detection, we especially put our focus on analyzing motions and
human in videos. We detected the events by three channels. Firstly, we adopted
a robust new descriptor called MoSIFT, which explicitly encodes appearance fea-
tures together with motion information. And then we trained event classifiers in
sliding windows using a bag-of-video-word approach. Secondly, we used the hu-
man detection and tracking algorithms to detect and track the regions of human,
and then just focus on the MoSIFT points in the human regions. Thirdly, after
getting the decision, we also borrow the results of human detection to filter the
decision. In addition, to reduce the number of false alarms further, we aggregated
short positive windows to favor long segmentation and applied a cascade classi-
fier approach. The performance shows dramatic improvement over last year on the
event detection task. For event detection in internet multimedia pilot, our system
is purely based on textual information in the form of Automatic Speech Recogni-
tion (ASR) and Optical Character Recognition (OCR). We submitted three runs; a
run based on a simple combination of three different ASR transcripts, a run based
on OCR only and a run that combines ASR and OCR. We noticed that both ASR
and OCR contribute to the goals of this task. However the video collection is very
challenging for those features, resulting in a low recall but high precision.

1 Semantic Indexing (SIN)

In SIN task, we submit 4 runs this year. The first, the second and the forth runs are the full sub-
missions whose results include all the 130 high level features. The third run is the light submission
which submits the results for 10 high level features predifined.

1.1 Description of submissions

• CMU1 1: MoSIFT feature only, trained with χ2 kernel for each high level feature.
• CMU2 2: Select the low level feature which has best performance on training data and then

train a classifier based on it.



• CMU3 3: Cascade classifier is trained with four layers, and different layer is trained by
using different visual feature.

• CMU4 4: Linearly combine the prediction results of the classifiers trained on MoSIFT
feature, SIFT feature, color feature, audio feature and face feature.

1.2 Details of submissions

1.2.1 CMU1 1

In this run, we use MoSIFT [9] feature to train a SVM(Support Vector Machines) classifier for each
high level feature. MoSIFT feature is a combination of SIFT feature with motion information. First
MoSIFT points are detected for each keyframe, and then 1000 visual vocabularies are generated
by using K-means. Each keyframe will be represented by a 1000 dimensional feature vector by
mapping the MoSIFT point to its most similar vocabulary. In the process of mapping, we consider
the N (N = 4) nearest neighbor vocabularies for each point and assign different weights to them
according to their distance rank. In the process of training, we do a two-fold cross-validation on
the development set for finding the best parameter and then train a model by using all the training
dataset. χ2 kernel is used in SVM because it shows better performance for calculating histogram
distance [35].

1.2.2 CMU2 2

As same as last year [10], this year we extract 5 different kinds of low level features for each
keyframe, including MoSIFT, SIFT, Grid-based color moments(GCM), Face, Mel-frequency cep-
stral coefficients (MFCCs). The development set are separated to 3 folders. The first two folders
are used do a two-fold cross-validation for finding the best parameter of each low level feature for
each high level feature. Then a model is trained on these two folders and tested on the other unused
folder. For each high level feature, we use average precision to evaluate the classifiers trained on
different low level features and use the low level feature that has the best performance to train a
classifier on the whole development set and then test it on the evaluation set for submission.

1.2.3 CMU3 3

This run is for the light submission which submits 10 high level features predefined. Cascade method
is used. Following are the details.

The key idea of cascade is inherited from AdaBoost [15] which combines a collection of weak clas-
sifiers to get a strong classifier. The classifiers are called weak because they are not expected to have
the best performance in classifying the whole training data. In order to boost weak classifiers, each
classifier emphasizes the examples which are incorrectly classified by the previous weak classifiers.
In our task, simpler classifiers are first used to reject the majority of negative samples before more
complex classifiers are called upon to achieve low false positive rates. Each weak classifier keeps
most of the positive examples but rejects a good number of negative examples. Face detection has
shown that the cascade architecture can reduce false positives rapidly but keep a high detection rate.

Firstly, we divide the negative samples into four parts, named Part-I, Part-II, Part-III and Part-IV,
where each part has the same positive samples. For each part, the MoSIFT, SIFT, GCM and Texture
are extracted in each frame or its neighbor frame. After that, the MoSIFT cascade SVM is trained on
Part-I, and then test it on Part-II. In the Part-II, if a negative sample is predicted as positive sample,
we will keep this negative sample, otherwise we will discard it. Thus, the Part-II has been filtered
by the MoSIFT model. The SIFT model will be trained on the Part-II, and we will test it on the
Part-III. For the GCM and Texture models will be trained by the same way. The training processing
is illustrated in Figure 1.

1.2.4 CMU4 4

In order to consider the influence of all low level features, we use constant weights for each feature
and linearly combine them to get a prediction score for each keyframe, and then rank them to get
the top ones for each high level feature as the submision result.



Figure 1: Framework of cascade method for semantic indexing.

2 Known-item search (KIS)

2.1 Description of submissions

In Known Item Search (KIS) task, we submitted 4 runs this year.

• CMU1 1: We classified all queries into 5 classes and optimized the weights of different
query types and different text fields for each query class.

• CMU2 2: We classified all queries into 5 classes and optimized the weights of different
text fields in keyword query.

• CMU3 3: We took all queries as 1 class and optimized the weights of different text fields
in keyword query.

• CMU4 4: We linearly combined runs from text-based retrieval and visual-based retrieval.

2.2 System introduction

• Text-based Retrieval with Lemur: the availability of the metadata make text-based retrieval
can be the most effective solution. In addition to released metadata, we also extracted
the Automatic Speech Recognition (ASR) and Optical Character Recognition (OCR) from
videos. Furthermore, to get more informative query description, we used Flickr API [1]
to filter and expand the query. Finally, with Lemur [3], we could weight the results from
different query type in different fields.

• Visual-based Retrieval: since the image/video examples are unavailable this year, we ex-
pand the image examples from Google Images [2]. That allowed us to build a content-based
video retrieval with Bipartite Graph Propagation Model [6]. In addition, we also added 12
color concept detectors in addition to the SIN 130 concept detectors to improve the concept-
based retrieval, as the color information is also important in the KIS queries. Furthermore,
we used Latent Dirichlet Allocation (LDA) [7] to exploit the correlations between texts
(metadata) and visual feature (video). This is our multimodal-based retrieval.

• Late Fusion: because the performance of different runs varies over the queries, optimizing
the fusion weights for all the queries was not sufficient. This year, we automatically clus-
tered the queries into different classes, based on their relevant scores from different runs.
Finally we optimized the fusion weights for each query class.

2.3 Text-based Retrieval with Lemur

We used Lemur [3] to build our Text-based Retrieval system. The most important things in Lemur
is the field index and query creativity.

For field index, firstly we analyzed the metadata and discovered that there are 74 different fields in
total. Most of those fields do not contain relevant information. They contain non relevant informa-
tion such as the upload date, non discriminative information such as whether the video is in color
and rare fields that only occur in a small number of videos. We decided that the most informative
fields were description, keywords and title. In addition, we added Automatic Speech Recognition
(ASR) and Optical Character Recognition (OCR). For all those fields we used Lemur [3] to create a
model Mf1 , . . . ,Mf5 for each field and also a model Mf6 that is a combination of all those fields.



For query creativity, in addition to the released keyword query and visual cues,we also used Flickr
API [1] to filter and expand keywords query and visual cues. Therefore, we get two kinds of filtered
queries: keyword query filtered by Flickr and visual cues filtered by Flickr, which only keeps the
word that appears in Filckr tag. we also get two kinds of expansion queries: keyword query expan-
sion by Flickr and visual cues expansion by Flickr, which only expand each word with the top 10
related tags in Flickr.

We calculate the optimal weights for each field and each query type based on an exhaustive search
and cross fold validation. Then the weighted beliefs for all the terms are combined resulting in a
score for the document. This is illustrated in Figure 2
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Figure 2: Indri Retrieval Model

2.4 Visual-based Retrieval

To make use of the visual information, we tried three different approaches: concept-based retrieval,
content-based retrieval, and multimodal-based retrieval.

2.4.1 Concept-based Video Retrieval

The flow of concept-based video retrieval is: lexicon construction, concept detection, query-to-
concept mapping.

For lexicon construction and concept detection, we first choose the 130 concepts in SIN task. Then
we noticed that a lot of queries contain color information; therefore we also trained 12 color concept
detectors. The training images are downloaded from Google Images. For query-to-concept mapping,
we simply check whether the concept appears in the query keywords or not.

The 12 color concept detectors improved our concept-based retrieval from 0.0043 to 0.0061 on the
evaluation queries.

2.4.2 Content-based Video Retrieval

Since the image/video examples are unavailable for KIS task, it is hard to make use of the visual
information. Therefore we used visual cues as query in Google Images and took the top 20 relevant
images as our image examples for KIS.

We discovered the latent topic in testing collection by Latent Dirichlet Allocation (LDA) [7], where
the SIFT bag-of-word feature was used and the topic number is set to 200. For the image examples
and keyframes in each testing video, we get their predicting score in each latent topic. Then using
the Bipartite Graph Propagation Model in [6], we can get the relevance scores between query and
latent topics. Finally, we can use these scores to linearly combine their predicting scores in videos,
and get the relevant scores between query and videos.

The Mean Inverted Rank on the evaluation queries is 0.0047.

2.4.3 Multimodal-based retrieval

To exploit the correlations between texts (metadata) and visual features (video). We use LDA to
describe the joint distribution of text bag of words and the SIFT bag of words feature in the video



collection. This allows us to represent each video in a latent topic subspace as well as the query and
build a bridge between text and visual feature with the latent topic subspace.

The Mean Inverted Rank on the evaluation queries is 0.0032.

2.5 Late Fusion

We used linearly combination to fusion to results from text-based system and visual-based system.
However, as the performance varies over the queries, it wouldn’t be effective to optimize the fu-
sion weights for all the queries. As the previous works in [33, 34],query-class dependent weights
optimization is a more reasonable strategy.

The query classifications in [33,34] are both from human perspective. In [34], four query classes are
predefined by human. They are Named person, Named object, General object and Scene. In [33],
each query is described by some binary query features, i.e. if the query topic contains 1) specific
person names, 2) specific object names, 3) more than two noun phrase, and so on. Since that, when
the characteristics of different runs don’t correspond to these query features or predefined class, the
query classification will fail. This year, we describe each query by its results from different runs to
find the corresponding query class.

For weight optimization, Logistical Regression was used in [33, 34]. However, for KIS, since the
number of answers of each query is only one, the ratio of positive samples to negative samples
is 1/8282. The training data is very unbalanced. That leads to the fail of logistical regression in
KIS task. Therefore, we used an exhaustive search and cross fold validation to find the optimized
weights.

2.6 Results and Discussion

In text-based system, with different query type and different field, we can get different runs. Consid-
ering the computational cost of the exhaustive search, we optimized the weights of different fields
in each query type and then optimized the weights for different query type. This is our submitted
CMU1 1 run.

To evaluate our performance the fusion of different fields and query-class dependent fusion, we
submitted two runs: one optimized weights of different text fields for keyword query in 5 classes,
the other optimized in 1 class. The former is CMU2 2 run. The latter is CMU3 3 run.

The evaluation results of these three runs are in Table 1.

• Average Fusion vs. Optimized Fusion: Comparing the row 1 and row 2 in Tabel 1, we can
find the Optimized Fusion increases the performance of the Average Fusion from 0.234 to
0.243. The optimized weights that found by an exhaustive search and cross fold validation
in 122 training queries did work in 300 testing queries.

• Querytype Fusion vs. Field Fusion: Comparing the row 2 with row 4 in Tabel 1, we can
find that the performance decreases from 0.243 to 0.234 after Querytype Fusion. Since we
did two level weights optimization, it could make the parameters over-fitting in training
queries. This also can explain the decreasing from 0.253 (row 3) to 0.214 (row 6).

• Single class vs. Multi-class: Comparing the performance of 1 class optimization with 5
classes optimization( as shown in the row 2 and row in Table 1), we can find the query-
classes improves the performance from 0.243 to 0.253. The demonstrate the affectivity of
query-class optimization.

The last submitted CMU4 4 run is a linear combination of the text based retrieval and the visual
based retrieval. Since the performance of visual-based runs are very low (less than 0.01) in training
queries, and for most of queries, the inverted rank is 0. We just fixed very small weights for visual-
based runs. Finally, the mean inverted rank of CMU4 4 is 0.231, in comparison to 0.243, that is the
performance of text-based fusion in CMU3 3. That means we didn’t get any improvement from the
visual part.

Since the text-based runs significantly outperform the visual-based runs, it is hard to effectively
fusion their results. As the computational cost of the exhaustive search, we could not find the best
weights to combine them in single query class or multi query classes. However, based on the query-
class dependent fusion results in text-based runs, we can see it is a promising pproach to perform



late fusion. In the future work, we will design a more practical algorithm to optimize fusion weights
on query classes.

Table 1: The Mean Inverted Rank of Different Runs.

Training Queries Testing Queries

Average fusion of different text fields for keyword query 0.263 0.234

CMU3-3:Optimized fusion of different text fields for
keyword query in 1 class 0.279 0.243

CMU2-2: Optimized fusion of different text fields for
keyword query in 5 classes 0.338 0.253

Optimized fusion of different query types and different
text fields in 1 class

0.297 0.234

CMU1-1: Optimized fusion of different query types and
different text fields in 5 classes

0.354 0.214

3 Surveillance event detection (SED)

Surveillance video recording is becoming ubiquitous in daily life for public areas such as supermar-
kets, banks, and airports. Thus it attracts more and more research interests and experiences rapid
advances in recent years. A lot of schemes have been proposed for the human action recognition,
among them, local interest points algorithm have been widely adopted. Methods based on feature
descriptors around local interest points are now widely used in object recognition. This part-based
approach assumes that a collection of distinctive parts can effectively describe the whole object.
Compared to global appearance descriptions, a part-based approach has better tolerance to posture,
illumination, occlusion, deformation and cluttered background. Recently, spatio-temporal local fea-
tures [17, 18, 24, 27, 31, 32] have been used for motion recognition in video. The key to the success
of part-based methods is that the interest points are distinctive and descriptive. Therefore, interest
point detection algorithms play an important role in a part-based approach.

The straightforward way to detect a spatio-temporal interest point is to extend a 2D interest point
detection algorithm. Laptev et al. [18] extended 2D Harris corner detectors to a 3D Harris corner
detector, which detects points with high intensity variations in both spatial and temporal dimen-
sions. On other words, a 3D Harris detector finds spatial corners with velocity change, which can
produce compact and distinctive interest points. However, since the assumption of change in all 3
dimensions is quite restrictive, very few point results and many motion types may not be well dis-
tinguished. Dollar et al. [13] discarded spatial constraints and focused only on the temporal domain.
Since they relaxed the spatial constraints, their detector detects more interest points than a 3D Harris
detector by applying Gabor filters on the temporal dimension to detect periodic frequency compo-
nents. Although they state that regions with strong periodic responses normally contain distinguish-
ing characteristics, it is not clear that periodic movements are sufficient to describe complex actions.
Since recognizing human motion is more complicated than object recognition, motion recognition
is likely to require with enhanced local features that provide both shape and motion information. So
MoSIFT algorithm [9] are proposed, which detects spatially distinctive interest points with substan-
tial motions. They first apply the well-known SIFT algorithm to find visually distinctive components
in the spatial domain and detect spatio-temporal interest points with (temporal) motion constraints.
The motion constraint consists of a ”sufficient” amount of optical flow around the distinctive points.

However, in the local interest point algorithms, most of them [13, 17, 18, 24, 27, 31, 32] did not
care where the interest points located, as their experiment scenes are relative simple and clear, and
most of conditions, just one or two people have some actions. However, these conditions seldom
hold in real-world surveillance videos. Even the same type of actions may exhibit enormous vari-
ations due to cluttered background, different viewpoints and many other factors in unconstrained
real-world environment, such as TREC Video Retrieval Evaluation (TRECVID) [4]. To our best
knowledge, TRECID has made the largest effort to bridge the research efforts and the challenges
in real-world conditions by providing an extensive 144-hour surveillance video dataset recorded in
London Gatwick Airport. In this dataset, the cameras are fixed, but the scenes are very complex,
and there are a lot of people walking through on the scenes. Thus, if we just adopt the local inter-



est points to detect the events on the scene, there are a lot of noise interest points for some events.
In TRECVID 2010 Evaluation, there are 7 required events such as CellToEar, Embrace, ObjectPut,
Pointing, PeopleMeet, PeopleSplitUp and PersonRuns. All of them are relative to the human. There-
fore, we will use some human detection and tracking approaches to locate these interest points, and
filter the noise interest points. Finally, we also adopt the results of human detection to estimate the
correctness of detection.

3.1 System introduction

For the tasks in TRECVID 2010 Event Detection Evaluation, we focus on human-related events. We
mainly follow the framework we employed in TRECVID 2009 Evaluation, which incorporates in-
teresting point extraction, clustering and classification modules. In TRECVID 2009 Evaluation, the
MoSIFT interesting points are extracted for each video firstly, and then bag-of-features are adopted.
After that, the cascade SVM will be trained. The details can be viewed in [10].

Figure 3: Framework of surveillance event detection.

However, we extend our framework by three kinds of ways. Firstly, for the classification modules,
different numbers of layers cascade SVM are trained. Secondly, for each frame, the MoSIFT points
are extracted, but they maybe have activities in these frames, and we can not discriminate them.
Thus, the human detection and tracking are adopted. We split the activities into many parts according
to the results of human detection and tracking, and just use these MoSIFT points located in the region
of human. Thirdly, when making the decision, there are a lot of false alarms, so we will filter the
decision according to results from the human detection and tracking. If there are no human in the
frame, but the decision shows there are some activities, and we will think this is a false alarm. After
getting the probabilities, we will fuse these results. In addition, to reduce the number of false alarms
further, we aggregated short positive windows to favor long segmentation. The system framework
is illustrated in the Figure 3.

3.2 MoSIFT Feature Based Action Recognition

For action recognition, there are three major steps: detecting interest points, constructing a feature
descriptor, and building a classifier. Detecting interest points reduces the video from a volume of
pixels to compact but descriptive interest points.

This section outlines our algorithm [9] to detect and describe spatio-temporal interest points. It was
shown [9] to outperform the similar Laptev’s method [18]. The approach first applies the SIFT al-
gorithm to find visually distinctive components in the spatial domain and detects spatio-temporal
interest points through (temporal) motion constraints. The motion constraint consists of a ”suffi-
cient” amount of optical flow around the distinctive points.

3.2.1 Motion Interest Point Detection

The algorithm takes a pair of video frames to find spatio-temporal interest points at multiple scales.
Two major computations are applied: SIFT point detection [19] and optical flow computation match-
ing the scale of the SIFT points.



SIFT was designed to detect distinctive interest points in still images. The candidate points are
distinctive in appearance, but they are independent of the motions in the video. For example, a
cluttered background produces interest points unrelated to human actions. Clearly, only interest
points with sufficient motion provide the necessary information for action recognition.

Multiple-scale optical flows are calculated according to the SIFT scales. Then, as long as the amount
of movement is suitable, the candidate interest point contains are retained as a motion interest point.

The advantage of using optical flow, rather than video cuboids or volumes, is that it explicitly cap-
tures the magnitude and direction of a motion, instead of implicitly modeling motion through ap-
pearance change over time.

Motion interest points are scale invariant in the spatial domain. However, we do not make them
scale invariant in the temporal domain. Temporal scale invariance could be achieved by calculating
optical flow on multiple scales in time.

3.2.2 Person Area Detection Based Feature Filter

MoSIFT feature does a great job in human behavior representation for human action recognition.
However, Are the MoSIFT interesting points caused by human? The MoSIFT points might be
caused by moving, light shaking, or shadow. If we could sample the MoSIFT points from human
body or area containing people, we might get much more accurate results. Thus, in this section, we
use person detection and tracking method to filter the MoSIFT point, and only keep the MoSIFT
point in human area for further use.

• Person Detection
Person detection is the most direct method to detect the area of human. Histogram of
Oriented Gradient (HOG) feature [11] and Haar like feature [30] are the most popular
features used in person detection. Locally normalized HOG descriptors are computed on
a dense grid of uniformly spaced cells and use overlapping local contrast normalizations
for improved performance. Haar like feature person detection used in VJ(Viola and Jones)
works is using AdaBoost to train a chain of progressively more complex region rejection
rules based on Haar-like wavelets and space-time differences. It consists of a filter that takes
image windows from n consecutive frames as input, a threshold and a positive and negative
vote. Since there are too many people in Gatwick surveillance video(especially camera
2, 3 and 5) , full body person detection is very limited in detecting the person blinded by
some background objects, such as showed in Figure 4. In our experiments, both HOG
person upper/full body detectors and Haar person upper/full body detectors are trained on
the development videos in Dev08 and INRIA dataset, and then the person detection results
are adopted to initialize the tracking objects, and finally we get the effective regions of
people according to tracking result.

• People tracking
However, detection people is a challenging problem, especially in complex real world
scenes, such as the Gatwick surveillance video, commonly involved multiple people, com-
plicated occlusions, and cluttered or varied illuminate backgrounds. High false positive and
low recall rate in human detection make the detection unreliable and cannot help much to
filter the MoSIFT point.
Tracking the person is another challenging problem in computer vision, but we use multi-
ple objects tracking to increase the recall of the person detection results. We use an ensem-
ble tracking algorithm which is based on particle filter tracker [20] and Multiple Instance
tracker [5] to track all the persons detected by person detection procedure.
For example, suppose the duration of an event is from 1 to 20 frames. From the first frame,
we can detect the people, but miss detection in the second frame. Then, we use tracking
method to track the person detected in the first image. And then, we add the person detected
in the second frame into the tracking object list, and track both objects detected in the first
frame and the second frame to generate the region of people. We maintain the tracing object
list and the temporary person detection objects list and determine which one in detection
objects list should be add to the tracking objects and which one should be remove from the
tracking object list. The tracking object list should be the basis of feature filter for further
use.
However, this is just a forward detection and tracking procedure to find where the people
are, we also perform the backward tracking to improve the recall of detection and tracking.



After that, we can find the human region in the very frame as many as we can. The same
way has been used in decreasing the high false positive rate.

Figure 4: Illustration of SIFT (left), MoSIFT (middle) and People detection (right).

• Motion and Appearance Feature Description
After getting the MosSIFT interest points, we need describe these points. Appearance and
motion information together are the essential components for an action classifier. Since
an action is only represented by a set of spatio-temporal point descriptors, the descriptor
features critically determine the information available for recognition.
The motion descriptor adapts the idea of grid aggregation in SIFT to describe motions.
Optical flow detects the magnitude and direction of a movement. Since, optical flow has
the same properties as appearance gradients, the same aggregation can be applied to op-
tical flow in the neighborhood of interest points to increase robustness to occlusion and
deformation.
The main difference to appearance description is in the dominant orientation. For human
activity recognition, rotation invariance of appearance remains important due to varying
view angles and deformations. Since our videos are captured by stationary cameras, the
direction of movement is an important (non-invariant) vector to help recognize an action.
Therefore, our method omits adjusting for orientation invariance in the motion descriptors.
Finally, the two aggregated histograms (appearance and optical flow) are combined into the
descriptor, which now has 256 dimensions.

3.3 Experiments and Discussion

Our event detection using a sliding window framework is applied to extend the MoSIFT recognition
algorithm to a detection task. Our submission started with MoSIFT interest points in each window,
clustered them into visual keywords, and used a classifier to detect events based on trained SVM
models. Figure 4 shows our MoSIFT features in a Gatwick video key frame. It shows that MoSIFT
feature is able to clearly focus on areas with human activity.

We assume that an event can be described though a combination of these different types of small
motions. MoSIFT is a scale invariant local feature which is less affected by global appearance,
posture, illumination and occlusion. After getting the MoSIFT, we try to use bag-of-words (BoW)
to quantify MoSIFT feature to a fixed number vector feature of each key frame. We use K-means
clustering to find the conceptual meaningful clusters and each cluster is treated as a visual word in
BoW approach. All the visual words consist of a visual word vocabulary. Then key points in each
key frame are assigned to clusters in the visual vocabulary which are their nearest neighbors. In
the end, each key frame is presented by a visual word histogram feature. In our experiments, the
vocabulary size is 2000, and a soft boundary to form our bag-of-word features is applied. We also
apply a kernel SVM [8] and one-against-all strategy to construct action models.

In our experiments, the size of the window is 25 frames (1 second) and it repeats every 5 frames. In
the training set, annotations are distributed to each window to mark it as positive or negative. This
creates a highly unbalanced dataset (positive windows are much less frequent than negative win-
dows). Therefore, we build a one, five and ten layers cascade classifier to overcome this imbalance
in the data and reduce false alarms. For each layer, we choose an equal ratio of (positive v.s. nega-
tive) training data to build a classifier to favors to positive examples. This leads the classifier with
high detection rates. In the training process, the cross-validation is adopted. By cascading five or
ten layers of these high detection rate classifiers, we can efficiently eliminate a good amount of false
positives without losing too many detections. We also aggregate consecutive positive predictions to
achieve multi-resolution.



In the Table 2, it was from our TRECVID2009, and Table 3, 4 and 5 are from TRECVID2010.
When we training one layer cascade SVM, four of seven events are less than 1 in MinDCR, but
when five or ten layers cascade SVM are trained, five of seven events are less than 1 in MinDCR.
Compared with our result from last year, MoSIFT and the cascade classifier significantly improved
our performance. In addition, five and ten layers cascade SVM can eliminate a good amount of false
positives, but the performance of ten layers cascade SVM is not much better than that in five layers
cascade SVM. Thus, in the future, we do not need train more than five layers cascade SVM for the
task.

In TRECVID 2009 Event Detection Evaluation [4], they provide 99 hours videos in the development
set and about 44 hours videos in the evaluation set, where the videos were captured using 5 different
cameras with image resolution 720576 at 25 fps. From the statistics of events in the development
set, we find out there are hardly any events in the videos of CAM4, so we exclude those videos
from our experiments to save some computation power. Even though, it will be very difficult to
compute so huge dataset. For some reasons, we can not finish all the experiments we design, but our
performance still has some improvement comparing to our TRECVID2009. In the following table,
RFA denotes Rates of False Alarms. PMiss denotes probability of missed event. DCR denotes
Detection Cost Rate.

Table 2: Our SED results of TRECVID2009.
Analysis Report # Ref # Sys # CorDet # FA # Miss Act.RFA Pmiss Act.DCR MinRFA MinPMiss MinDCR

CellToEar 194 22658 100 22558 94 1479.483 0.484 7.882 0.066 1 1
Embrace 175 20080 146 19934 29 1307.386 0.166 6.703 1.377 0.989 0.996
ObjectPut 621 2353 42 2311 579 151.569 0.932 1.69 0.066 1 1
PeopleMeet 449 854 58 796 391 52.206 0.871 1.132 0 0.998 0.998
PeopleSplitUp 187 9351 28 9323 159 611.456 0.85 3.907 0.721 0.995 0.998
PersonRuns 107 20799 87 20712 20 1358.411 0.187 6.979 0.066 1 1
Pointing 1063 6968 230 6738 833 441.917 0.784 2.993 0.066 0.999 0.999

Table 3: SED results of TRECVID2010, using one layer cascade SVM.
Analysis Report # Ref # Sys # CorDet # FA # Miss Act.RFA Pmiss Act.DCR MinRFA MinPMiss MinDCR

CellToEar 194 1787 14 1773 180 116.284 0.928 1.509 0.066 1 1
Embrace 175 5890 113 5777 62 378.889 0.354 2.249 28.005 0.846 0.986
ObjectPut 621 1961 45 1916 576 125.662 0.927 1.556 0.066 1 1
PeopleMeet 449 5814 197 5617 252 368.395 0.561 2.403 2.164 0.969 0.98
PeopleSplitUp 187 2784 42 2742 145 179.836 0.775 1.675 2.755 0.984 0.998
PersonRuns 107 5741 61 5680 46 372.527 0.43 2.292 7.214 0.925 0.961
Pointing 1063 2992 180 2812 883 184.427 0.831 1.753 0.066 1 1

Table 4: SED results of TRECVID2010, using five layers cascade SVM.
Analysis Report # Ref # Sys # CorDet # FA # Miss Act.RFA Pmiss Act.DCR MinRFA MinPMiss MinDCR

CellToEar 194 39 0 39 194 2.558 1 1.013 0.066 1 1
Embrace 175 410 16 394 159 25.841 0.909 1.038 1.574 0.983 0.991
ObjectPut 621 20 1 19 620 1.246 0.998 1.005 0.066 1 1
PeopleMeet 449 305 24 281 425 18.43 0.947 1.039 0.525 0.987 0.989
PeopleSplitUp 187 31 2 29 185 1.902 0.989 0.999 1.443 0.989 0.997
PersonRuns 107 583 19 564 88 36.99 0.822 1.007 1.049 0.944 0.949
Pointing 1063 183 25 158 1038 10.363 0.977 1.028 0 0.999 0.999

4 Event detection in Internet multimedia(MED)

4.1 System introduction

We developed a general system that is independent of the concept. Our system classifies each video
into two classes, the video either belongs to the given concept or not. This classification is solely
based on ASR and OCR. We extracted speech transcripts with 3 different segmentations as described
in Section 4.1.1. In addition we extracted OCR as described in Section 4.1.2.

We combined the three different speech transcripts into one bag of words on which we trained a
SVM classifier for each concept. For this we used the LIBSVM implementation [8]. We used 2 fold
cross validation to optimize the parameters for the Normalized Detection Cost [28]. Similarly we
trained a SVM classifier for the OCR as well as a combined SVM on both of the outputs of our two
SVM classifiers.



Table 5: SED results of TRECVID2010, using ten layers cascade SVM.
Analysis Report # Ref # Sys # CorDet # FA # Miss Act.RFA Pmiss Act.DCR MinRFA MinPMiss MinDCR

CellToEar 194 57 0 57 194 3.738 1 1.019 0.066 1 1
Embrace 175 551 26 525 149 34.432 0.851 1.024 0.262 0.989 0.99
ObjectPut 621 26 1 25 620 1.64 0.998 1.007 0.328 0.998 1
PeopleMeet 449 388 27 361 422 23.676 0.94 1.058 0.197 0.989 0.99
PeopleSplitUp 187 42 3 39 184 2.558 0.984 0.997 2.23 0.984 0.995
PersonRuns 107 532 19 513 88 33.645 0.822 0.991 2.23 0.925 0.936
Pointing 1063 219 26 193 1037 12.658 0.976 1.039 0 0.999 0.999

4.1.1 Automatic Speech Recognition

An automatic transcription of the audio track of the videos was generated by a simple speech-to-text
(STT) system. This consisted of the first pass of a “Rich Transcription” system developed for and
successfully evaluated in the NIST RT-04S “Meeting” evaluation.

The system used a robust front-end and was trained on a variety of sources, including Broadcast
News (BN) and “Meeting” audio, but no Web-, Youtube, or home-made material. The system is built
for American English and uses a vocabulary of about 40 k words, plus models for silence, human,
and non-human noises, plus entries for mumbled words and multi-words. The language model was
trained on BN and Meetings. It is implemented in Janus [14], using the Ibis decoder [29]. A detailed
description of the original STT system can be found in [21, 22]. Prior to transcription, the signal is
segmented, using audio information alone. For this, three approaches were evaluated:

• a simple segmentation using fixed 10 s segments as “baseline”

• a first segmentation and clustering into silence, noise, music, and speech classes [16], of
which only the speech part is processed by the STT system

• processing all segments with STT, neglecting the clustering information, so that the noise
models can handle non-speech events

The output of the recognizer consists of a word string (cluster information is not currently used),
including “gamma” word confidences [26]. Table 6 shows the influence of the segmentation on the
generated output, and Table 7 shows overall characteristics of the generated segmentation.

Table 6: Characteristics of different segmentations. “speech-only” consists of 48.9 h from the overall
corpus.

Segmentation # segments # lexical # non-lex type
test-1 42 247 427 393 125 460 10 s fixed
test-2 66 763 315 516 58 021 speech-only
test-3 327 811 978 657 367 593 all

The total database consists of 3290 “speakers”, or clips, with a total duration of 123h. Audio was
extracted and processed using publicly available tools. The system runs in about real-time on “clean”
audio; the use of a Condor scheduler, plus the large proportion of mismatched audio however provide
for a significantly larger wall-clock processing time.

Table 7: Overall audio characteristics and segmentation.

Type silence music noise speech
average duration 1.0 s 6.5 s 2.4 s 2.6 s
number 16 428 16 778 59 388 66 763

Word error rates (WER), or similar measures have not been computed for the speech recognition
output, however it appears that the accuracy of audio analysis is reasonable for some clips (WER <
20 %), while for others, notably those far from the original domain of the STT system, they are very
bad. Confidence measures and the availability of non-lexical output of the STT system may provide
additional useful input to the overall classification module.



4.1.2 Optical Character Recognition

We used the Informedia system [12] to extract the OCR. Our assumption is that text needs to be
visible at least one second for humans to be readable. Therefore we sample one frame per second
and consider this frame for text extraction. A text localization step extracts candidate text lines from
each image by applying a series of filters. First text blocks are identified, where a text block is a
rectangular region containing one or more lines of text, based on the assumption that text blocks
consist of short edges in vertical and horizontal orientations. Moreover it assumes that those edges
are connected to each other, because of the connection between character strokes. Edge detection is
done using a Canny filter and morphological operators then perform edge dilation in both vertical
and horizontal direction. Then a single image is created by combining both the horizontal and
vertical edges after dilation as illustrated in Figure 5.

(a) Horizontal Edge Dilation (b) Vertical Edge Dilation (c) Combined Image

Figure 5: Illustration of Edge Dilation.

In the next step text blocks are extracted by doing a connected component analysis and computing
the external contour of a region. At this point the system has a high recall, but also quite some
false alarms mainly caused by slanting stripes and small areas of the background or human faces
consisting of sharp edges. In order to reduce the number of false alarms and refine the location of
text strings in candidate regions that contain text connected with background objects, individual text
lines are identified. Then the system classifies extracted text lines into actual text regions, which is
called text verification.

The final phase is the recognition, which is performed by a commercial OCR system. Before the text
line can be processed by such a system, the image needs to be binarized. In this binarization step
the text is extracted from the background by using Otsu’s algorithm [25], which creates a histogram
of the image and selects a threshold to maximize interclass variance. The resulting binary image is
given to a commercial OCR system, which in this case is Textbridge OCR [23].

4.2 Results and Discussion

We submitted 3 runs. One based on ASR, one run based on OCR and a combination run. This
resulted in 8 runs with different thresholds: c-ASR-1,2,3,4, c-OCR-1,2,3 and p-fusion-1. For the
combination run, we used a meta fusion strategy which takes the component probability output as
input and outputs an overall prediction.

Figure 6 shows an overview of all the submitted runs for the three different events. Our best run
is p-fusion-1, it detects more positive samples than all the other runs. Moreover it has zero false
alarms in contrast to the best ASR and OCR runs. This indicates that a late fusion helps improving
the detection and even makes the system more robust against noise.

(a) Battling in Run (b) Assembling Shelter (c) Making Cake

Figure 6: All runs’s NDC score.



Table 8: Best NDC, Average NDC, and Our Best NDC for three events.
Best NDC Average NDC Our Best NDC

Battling in Run 0.4074 0.8285 0.8511
Assembling Shelter 0.7284 1.3100 0.913

Making Cake 0.6298 1.2330 0.9362

Table 9: Our system’s performance on the 1724 videos of the test collection.
battling in run assembling shelter making cake

#CorDet #FA #Miss #CorDet #FA #Miss #CorDet #FA #Miss
c-ASR 1 6 0 41 2 0 44 3 0 44
c-ASR 2 6 0 41 2 0 44 3 0 44
c-ASR 3 6 0 41 2 0 44 3 0 44
c-ASR 4 6 1 41 3 2 43 3 2 44
c-OCR 1 6 0 41 4 2 42 3 0 44
c-OCR 2 6 5 41 4 6 42 3 2 44
c-OCR 3 6 9 41 4 8 42 3 5 44

p-fusion 1 7 0 41 4 0 42 3 0 44

Table 8 shows the Best NDC, Average NDC, and Our Best NDC for the three events. The perfor-
mance of our system is above average according to the evaluation criteria.

Table 9 shows the detection results and false alarms for all the runs for the event ”battling in run”.
Obviously our system is very reserved, this can be explained by the fact that we depend on ASR and
OCR only. Both those features are challenging to extract from internet videos, because there is a
huge variation in quality. Therefore the ASR and OCR are very noisy and often contain noise only.
We noticed that both the ASR and OCR either perform very well or very poor, i.e. we did not find
many recognized words with small errors. This was also reflected in the confidence scores of our
SVM classifiers.

Interesting to see is that there were ingredients such as corn, butter and sauce among the most
frequent words recognized by our OCR. Those words would strongly indicate that the video belongs
to the ‘making a cake’ event. The ASR on the other hand contains much more stopwords and less
words that strongly indicate one of the events. This is also reflected in the results, hence the OCR
runs are slightly better than the ASR runs.

4.3 Conclusion & Future Work

We noticed that our system is only able to detect a relatively small number of positive samples, but
with high precision. This is caused by the fact that this video collection is very challenging for ASR
and OCR systems. However there is plenty of room for improvement to make the most out of ASR
and OCR. The most obvious would be improving the performance of the OCR and ASR systems
itself.

However there are alternatives that we did not explore yet, one of them is the possibility of detecting
certain sounds that might indicate a certain event. Consider for example the ‘battling in run’ event,
here sounds like a cheering crowd and shouting would distinguish those videos from the other events.
Another unexplored area is using the event descriptions, currently we ignored those and only made
use of the development videos and their labels. Furthermore we did not use any visual features such
as SIFT, color histograms, gist and motion features such as optical flow.

We conclude that both ASR and OCR showed their contribution to being able to recognize videos of
certain events. In particular those features are able to detect videos with high precision. In the future
we plan to incorporate visual features as well as improving upon our ASR and OCR performance.
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