

数字视频编解码技术国家工程实验室 National Engineering Laboratory for Video Technology

PKU@TRECVID-ED2010: Pair-wise Event Detection in Surveillance Video

General Coach: Wen Gao^a, Xihong Wu^b, Tiejun Huang^a Executive Coach: Yonghong Tian^a, Yaowei Wang^a, Lei Qing^c Member: Kaihua Jiang^b, Zhipeng Hu^a, Zhongwei Chen^c, Guochen Jia^a, Ten Xu^a, Qiong Hu^c, Qiong Hu^c, Guangcheng Zhang^b

^a National Engineering Laboratory for Video Technology, Peking University
 ^b Speech and Hearing Research Center, Peking University
 ^c Key Lab of Intel. Inf. Proc., Institute of Computing Technology, Chinese Academy of Sciences

Outline

Overview

- Tasks This Year
- Our Results This Year
- Our eSur System for ED 2010
 - Background Modeling
 - Detection and Tracking
 - Event Detection

Summary

Tasks This Year

Task

- To develop an automatic system to detect observable events in surveillance video
- Events in 2009
 PeopleMeet
 PeopleSplitUp
 Embrace
 PersonRuns
 ElevatorNoEntry

Our Results in TRECVID-ED 2010(1)

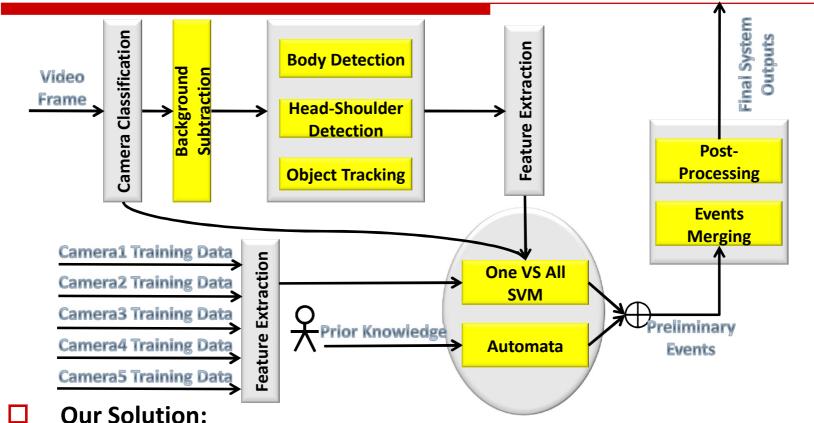
Compared with the best results (according to NDCR) this year

PeopleMeet	#Ref	#Sys	#CorDet	#FA	#Miss	NDCR
PKU-IDM/p-eSur_2	449	156	<u>12</u>	144	437	<u>1.02</u>
PKU-IDM/p-eSur_4	449	4331	11	150	438	1.025
PeopleSplitUp						
PKU-IDM/p-eSur_4	187	167	<u>16</u>	136	171	<u>0.959</u>
PKU-IDM/p-eSur_2	187	157	13	144	174	0.978
Embrace						
IPG-BJTU_5/p-SYS_1	175	64	9	55	166	0.967
PKU-IDM/p-eSur_4	175	925	6	71	169	0.989
PersonRuns						
QMUL-ACTIVA_3	107	360	36	223	71	0.737
PKU-IDM/p-eSur_3	107	2748	2	76	105	1.006

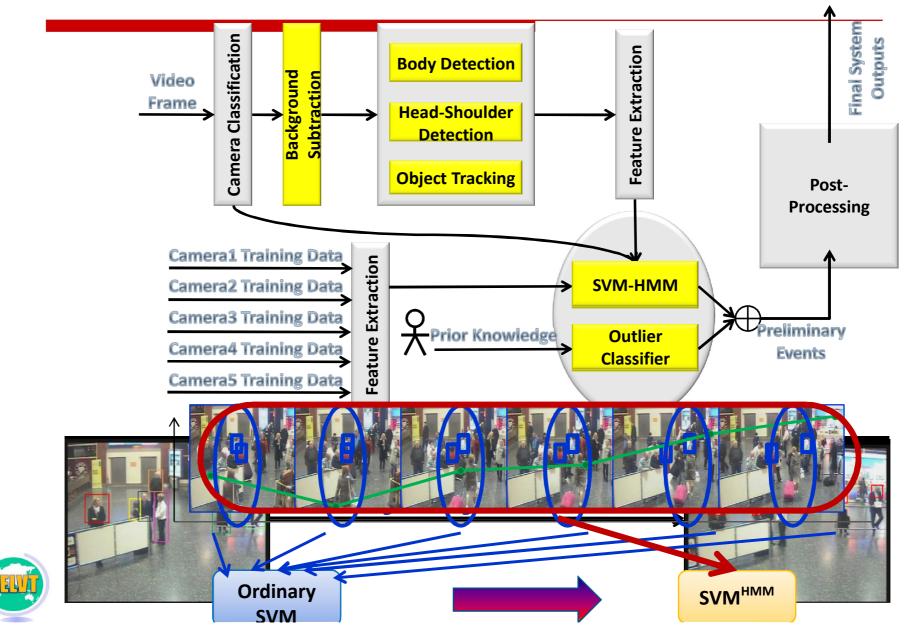
*Systems with 0 correct detection are excluded.

Our Results in TRECVID-ED 2010(2)

Compared with our results last year


PeopleMeet	#Ref	#Sys	#CorDet	#FA	#Miss	Act.DCR
2009	449	125	<u>7</u>	118	442	<u>1.023</u>
2010	449	156	<u>12</u>	144	437	<u>1.02</u>
Improve			th correction the correct the correct the correct the correct term is the correct term in the correct term is the correct term in the correct term is the correct term		ection	rate
		anu Au		\ !		P
Embrace						<u> </u>
Embrace 2009	175	80	<u>1</u>	79	174	<u>1.02</u>
	175 175	80 925	<u>1</u> <u>6</u>	79 71	174 169	<u>1.02</u> <u>0.989</u>

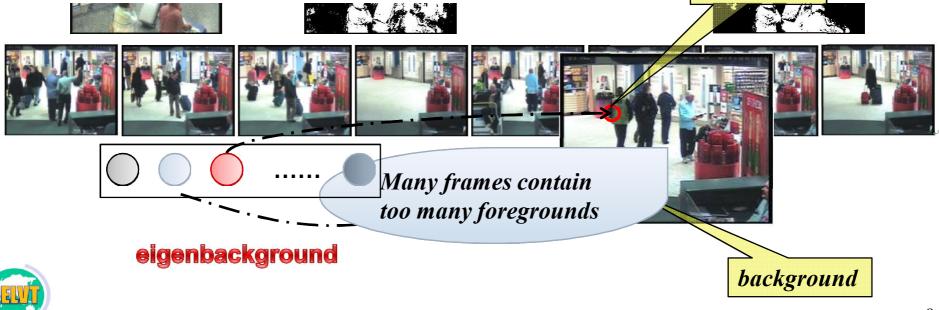
Our System in 2009: eSur


- 1 Our Solution.
 - 1. Adaptive background modeling
 - 2. Body and head-shoulder detection and adaboost-based tracking
 - 3. Ensemble of one-vs.-all SVM and automata-based classifiers
 - 4. Effective event merging and post-processing

7

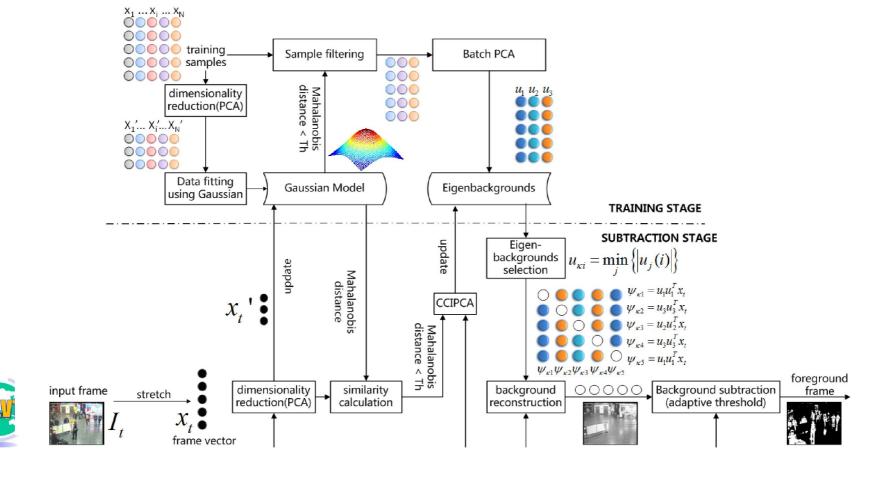
Our System in 2010: eSur v1.2

What are the Improvements?


- Background Subtraction
 - Method: Pixel-level selective eigenbackground
 - Result: Better foreground object detection with much lower false alarms in crowded scenes
- Head-Shoulder Detection
 - Method: Multi-pose learning for detection
 - Result : *Greatly boost the recall*
- Event Detection
 - Method: SVM^{HMM} classifier employed for pair-wise event detection
 - Result : More correct detections with less false alarms than last year

Our Solution (1): Background Modeling

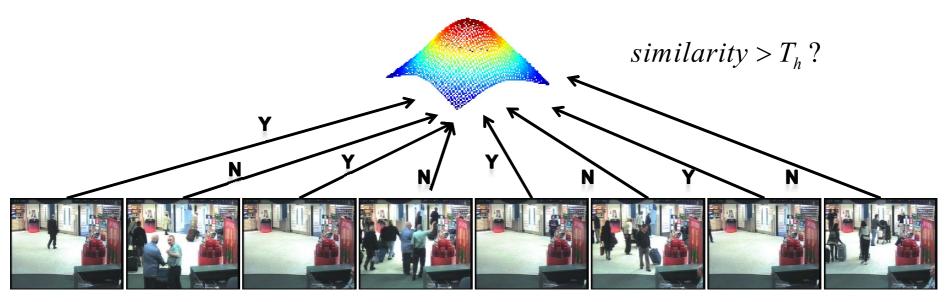
- Background Modeling in 2009
 - Method: Block-wise PCA
 - Segment a frame into blocks, and model each block respectively
 - Shortcomings
 - Background subtraction is performed on frame level. As such, not all pixels get the best reconstruction re: *foreground*



Selective Eigenbackgounds (1)

Main Idea

- Select frames with fewer foregrounds to train eigenbackgrounds
- Background reconstruction is performed selectively on pixel level
- Adaptive thresholding strategy is employed for background subtraction

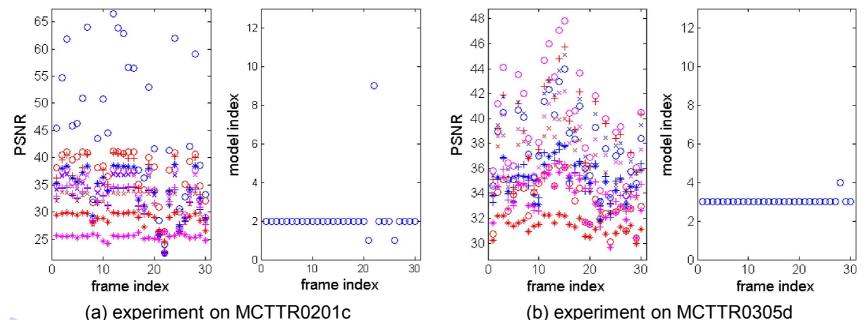


Selective Eigenbackgounds (2)

Frame Selection for Background Modeling

- A Gaussian model is used to describe the crowd density of a scene
- Select frames with fewer foregrounds for background initialization and update by judging the similarity between frames and GMM

High-similar frames selected for background initialization and update



Selective Eigenbackgounds (3)

PSNR-based Model Selection

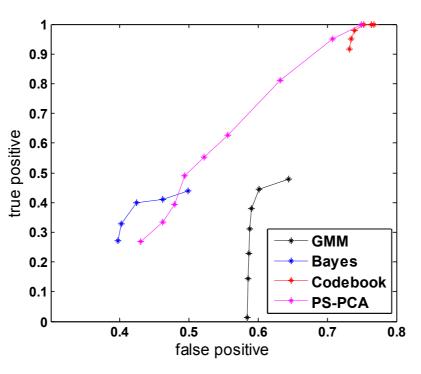
- Multiple background models are trained
- Model Selection is used to choose the background model in the database that most fits the observed scene.

Peak signal-to-noise ratio

model selection experiment: For each frame, the PSNRs between itself and the reconstructed background images using the trained background models are computed. Then a model can be selected according to the maximum PSNR. Finally, the most suitable model can be determined by voting on the selection results from the 30 frames.

Experimental Results (1)

Compared with several state-of-the-art methods


original frame

GMM KDE [Stauffer,1999] [Elgammal,2000]

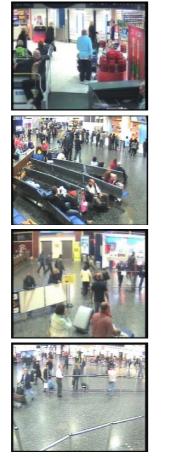
Codebook E [Kim, 2005]

Bayes method [Li, 2003]

Our method

Experimental Results (2)

Compared with other eigenbackground methods


camera 1

camera 2

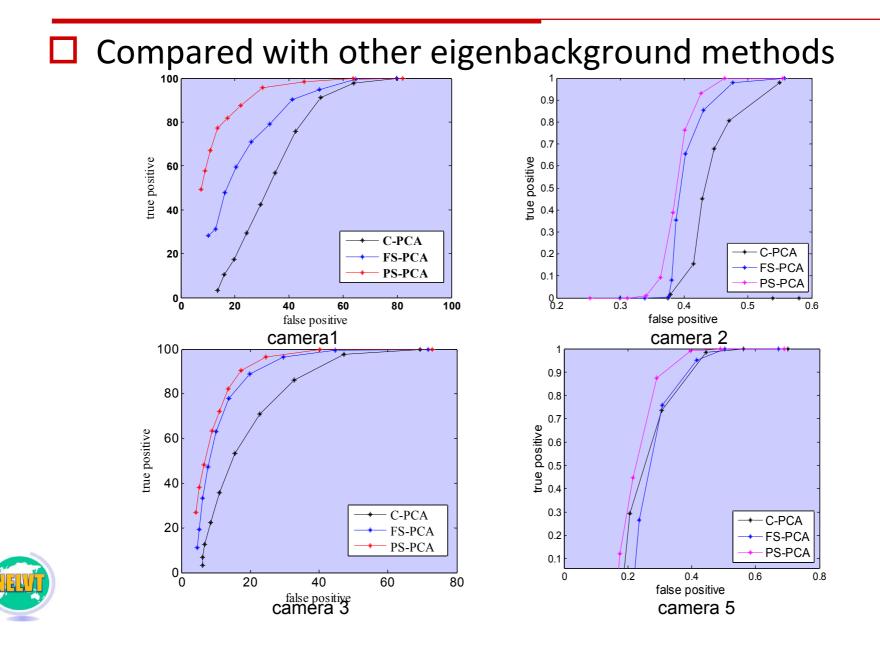
camera 3

camera 5

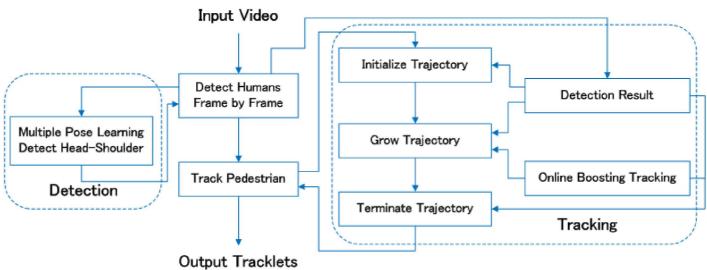
original frame

Classic PCA (C-PCA)

Block-wise PCA (FS-PCA)



Selective Eigenbackground on Pixel Level(PS-PCA)


Experimental Results (3)

Our Solution (2): MPL Detection and Tracking

- Head-shoulder Detection:
 - Feature: Histogram of oriented gradients (HOG)
 - Classifier: Multiple pose learning ^[1]
- Tracking
 - Online boosting ^[2]
 - Combining color similarity to reduce drift

[1] Boris Babenko, Piotr dollar et al, Simultaneous Learning and Alignment: Multi-Instance and Multi-Pose Learning, ECCV, 2008.

[2] Helmut Grabner et al, Online Boosting and Vision, CVPR,2006.

Multiple Pose Learning

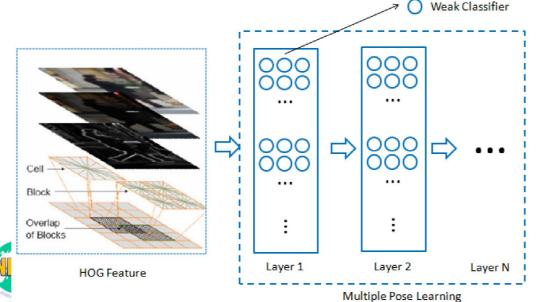
17

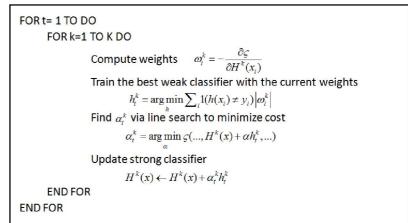
- The detector works best when trained with images that come from *a single coherent group* and *lie in approximate correspondence* ^[1].
- Issue: Data Confusion

Intra-class diversification vs. Inter-class correlation

Solution: Data Alignment

To split data into groups and train classifiers for each



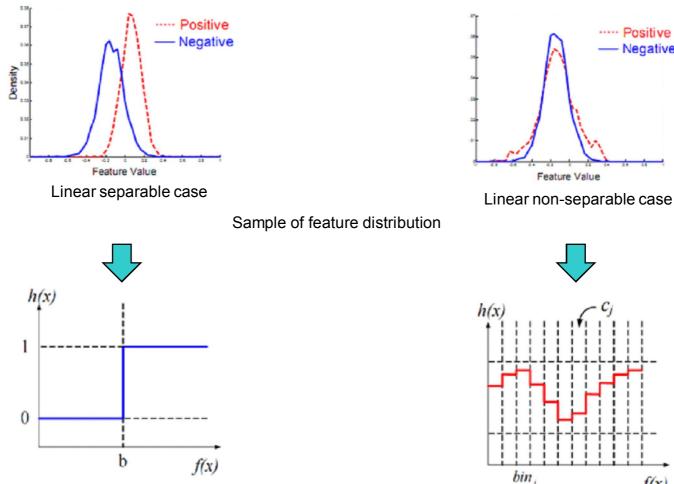


Cascaded Classifiers of MPL

Detection Framework

- Multiple Pose Learning : Simultaneously group the positive data, and train classifiers for each of the K groups by combining weak classifiers
 - Each positive sample is scored by K weak classifiers from different aspects
- Cascaded Classifiers
 - Classifiers are combined using a boosting manner

Define probability as a softmax of probabilities determined by each classifier and optimize the loss function (i.e., the negative log likelihood), where derivative of the loss function gives the instance weights for each classifier 18

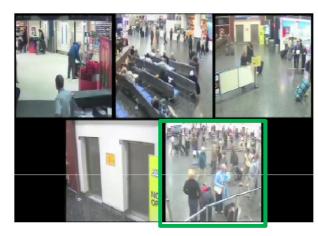

····· Positive

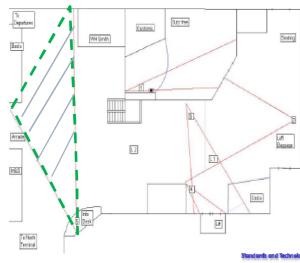
--- Negative

f(x)

Weak Classifier

Piecewise Function

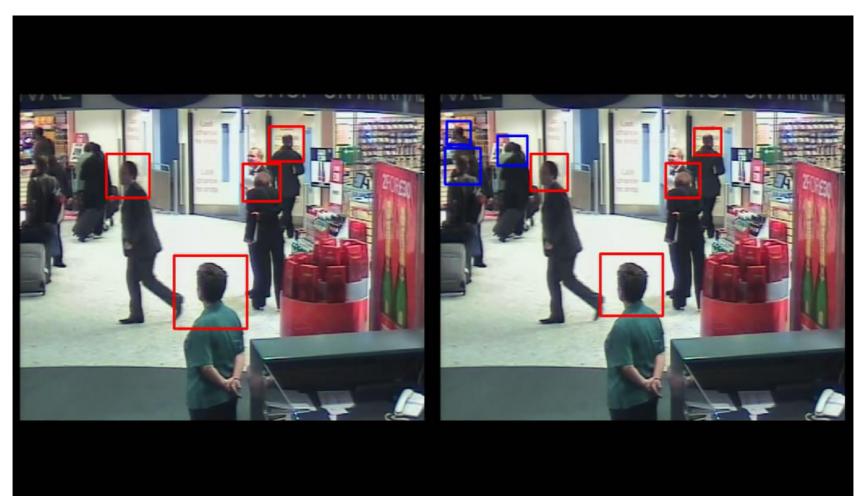



Decision tree and piecewise function

Cascaded Classifiers of MPL

□ Adjust the detector searching scales

Experimental Results


On a labeled TRECVID 2008 corpus

Camera1	Recall	Precision	F
Cascade HOG	33.5%	88.8%	0.4734
MPL	53.9%	79.6%	0.6429
Camera2	Recall	Precision	F
Cascade HOG	24.3%	81.6%	0.3745
MPL	56.0%	77.3%	0.6495
Camera3	Recall	Precision	F
Camera3 Cascade HOG	Recall 30.5%	Precision 72.8%	F 0.4299
Cascade HOG	30.5%	72.8%	0.4299
Cascade HOG MPL	30.5% 42.9%	72.8% 66.7%	0.4299 0.5222

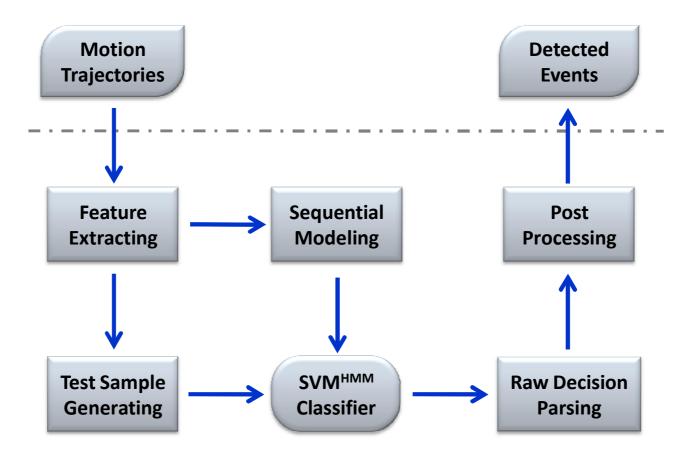
Visualized Explanation

Our Solution (3):

Sequential Learning for Event Detection

- Event Analysis based on Sequential Learning
 - Video events are inherently time sequential patterns
 - Model the activity as sequence structure and consider the information in and between frames
 - Our current work focuses on pair activities,
 - e.g. PeopleMeet/SplitUp/Embrace

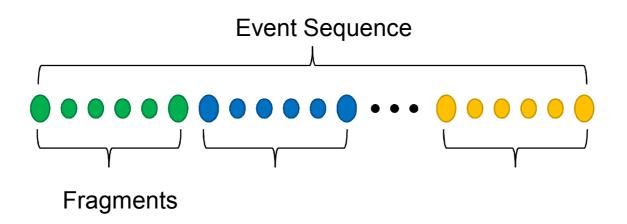
Meet, SplitUp or just Stand&Talk?



PeopleMeet !

Detection Framework

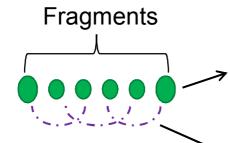
▲ In our implemented system, classifier is trained for each type of event



Sequential Learning for Event Detection (1)

Structural Modeling

- Treat event video clips as holistic frame sequences
- A small number of adjacent frames make up a fragment
- Model the event sequence as a set of contiguous fragments



Sequential Learning for Event Detection (2

Features of Fragments

- Describe frames of fragment and represent the fragment
- Trajectory based motion and pair features:
 - Absolute velocity, acceleration
 - Angular separation of moving directions
 - Distance between pair of persons $\frac{\pi}{Ang(P_1, P_2)} = \{i \mid \theta_p \theta_p \in (i-1) * \frac{\pi}{Ang(P_1, P_2)}, i \in Z^+ \}$ Statistics of the features within several adjacent frames
 - - mean", variation, trend of distances between persons

$$T = \frac{1}{N} \sum_{i=1}^{N-1} \frac{1}{\overline{Dist}} (Dist_i - Dist_{i+1})$$

Features extracted from frames describe the basic information of event

Statistics employs correlation within fragment

Sequential Learning for Event Detection (3

Sequence Learning

- Represent events as feature sequences, but not concatenated feature vectors
- Dynamics of the pattern within an event is modeled by Hidden Markov Model^[1]
- Learning and classification processes are performed by an implementation of structural SVM, SVM^{HMM[2]}

Features of Fragments $y = \arg \max \left\{ \sum_{i=1..l} \left[\sum_{j=1..k} (x_i \cdot w_{y_{i-j}...y_i}) + \phi_{trans}(y_{i-j,...,y_i}) \cdot w_{trans} \right] \right\}$

Handling dependencies between adjacent fragments using Viterbi decoding

[1] Yasemin Altun, Ioannis Tsochantaridis and Thomas Hofmann. Hidden Markov Support Vector Machines. International Conference on Machine Learning (ICML), 2003.
[2] Thorsten Joachims, Sequence Tagging with Structural Support Vector Machines, 27 http://www.cs.cornell.edu/People/tj/svm_light/svm_hmm.html

Decision making and Post Processing

- Divide videos for detection into test samples using sliding window strategy
- Sequential results are generated by SVM^{HMM} classifiers
- Transform classification sequence to raw decision with voting
- Exploit priors for post-processing

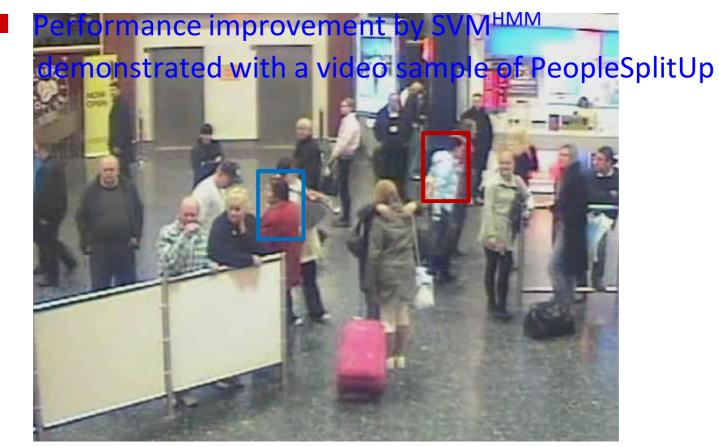
▲ numbers stand for event class labels

Experimental Results

Evaluation on 10 hours data from TREVID-ED 2008 corpus

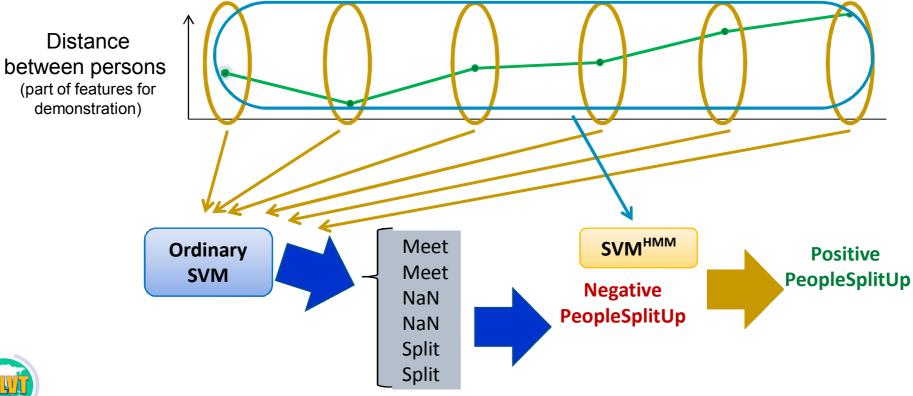
event	#Ref	#Sys	#CorDet	#FA	#Miss	DCR	NDCR
PeopleMeet	200	★ 54	7	47	291	198.21	1.000
	298	♦ 29	2	27	296	200.34	1.000 1.007 0.991 1.011 0.995
PeopleSplitUp	150	★ 81	7	74	145	195.23	0.991
	152	♦ 21	0	21	152	201.31	1.011
Embrace	110	★ 82	5	77	111	196.19	0.995
	116	♦ 44	1	43	115	200.96	1.000

★ is results of sequential learning, SVM^{HMM}
 ♦ is results of last year's ordinary SVM


Obtain performance improvement, especially on the number of correct detection

Visualized Explanation

Experiments



Visualized Explanation

Evaluation Results – PeopleMeet

Analysis Report #Ref #Sys #	CorDet #FA #Miss Act. RFA Act	. PMiss Act.	. DCR Min RFA M	lin PNiss Mir	DCR
CMU_2 / p-VCUBE_1 449 10841	253 10588 196 694.422	0.436 3	3.909 2.099	0.969 (ı. 979
CMU 2 / p-VCUBE 10 449 305	24 281 425 18.430	0.947 1	1.039 0.525	0.987 (. 989
CMU_2 / p-VCUBE_11 449 854	58 796 391 52.206		1.132 0.000	0.998 0	DET for PeopleMeet Event
CMU_2 / p-VCUBE_2 449 17547	298 17249 151 1131.288	1.000.0	5. 993 2. 361	0.978 0	
CMU 2 / p-VCUBE 3 449 11563	249 11314 200 742.037		4.156 1.836		. 989
CMU 2 / p-VCUBE 4 449 2261	104 2157 345 141.468		1.476 2.164	2. 2. 2. 2. 2.	
CMU_2 / p-VCUBE_5 449 305	24 281 425 18.430		1.039 0.525		
CMU_2 / p-VCUBE_6 449 19215	327 18888 122 1238. 783		6.466 0.197		990 99
CMU 2 / p-VCUBE 7 449 10307	218 10089 231 661.694		3.823 0.197		95
CMU_2 / p-VCUBE_8 449 2260	91 2169 358 142.255		1.509 0.197		
CMU_2 / p-VCUBE_9 449 388	27 361 422 23.676		1.058 0.197		1.990 arco
INRIA-WILLOW_3 / p-SYS_1 449 40045	316 39729 133 2605. 655		3. 325 0. 066		
					.000 40 6
			3.927 0.066		0.300
INRIA-WILLOW_3 / p-SYS_3 449 40045	300 39745 149 2606. 704		3.365 0.066	10000000	. 000 20
INRIA-WILLOW_3 / p-SYS_4 449 9696	104 9592 345 629.098		3.914 0.066		
INRIA-WILLOW_3 / p-SYS_5 449 40045	292 39753 157 2607. 229		3.386 0.066		.000 5 1 1 1 1 10 100 1000 001 0.1 1 FFA (in Events/Hour)
INRIA-WILLOW_3 / p-SYS_6 449 9696	101 9595 348 629.295		3. 921 0. 066	1.000 1	Iso-DCR lines Actual DCR=6 466 Actual DCR=13.386 Actual DCR=5.339
PRU-IDM_5 / p-eSur_1 449 148	1 141 442 9.248		1.031 1.377		VUUB_1 CMU_2 p-VCUBE_7 TUU_2 p-TUUMM_4 ut DCR=3.909 Actual DCR=3.823 Actual DCR=3.922 Actual DCR=4.629
PKU-IDM 5 / p-eSur 2 449 156	12 144 437 9.444		1.020 0.656		1.990 2 /CUBE_10 CMU_2 p-VCUBE_8 PKU+IDM_5 p-esur_1 TJU_2 p-TJUMM_5
PKU-IDM_5 / p-eSur_3 449 6781	12 236 437 15.478		1.051 0.918		OOD application Addia DCX=1.009
PKU-IDM_5 / p-eSur_4 449 4331	11 150 438 9.838	0.976 1	1.025 0.066	0.998 0	998 us DCR=1.132 △ Actual DCR=1.058 c Actual DCR=1.020 √ Actual DCR=3.175
IJU_2 / p-IJUMM_1 44920859	340 20519 109 1345. 753	0.243 6	6.971 1.902	U. 967 C	. 976 ual DCR=5.993 Ø Actual DCR=13.324 J Actual DCR=1.051 Ø Actual DCR=2.403
TJU_2 / p-TJUMM_2 44917596	320 17276 129 1133.059	0.287 5	5.953 1.968	0.969 0	1.979 2 P-VCUBE_3 → INRIA-WILLOW_3 P-SYS_2 ▲ PKU-IDM_5 P+85ur_4 → TJU_2 P-TJUMM_8 →
TJU_2 / p-TJUMM_3 44915568	300 15268 149 1001. 363	0. 332 5	5.339 1.968	0.969 0	979 _2 p. VCUBE_4 INRIA-WILLOW_3 p.SYS_3 TJU_2 p.TJUMM_1 TTandGT_1 p.EVAL_1
TJU_2 / p-TJUMM_4 44913278	284 12994 165 852. 221	0.367 4	4.629 2.033	0.969 0	Ual DCR=1.476 Actual DCR=13.365 Actual DCR=5.972 Actual DCR=5.972 Actual DCR=1.003 TJU_2 p-TJUMM_2
TJU_2 / p-TJUMM_5 44910841	253 10588 196 694. 422	0.436 3	3.909 2.099	0.969 0	970 ual DCR=1.039 C Actual DCR=3.914 Actual DCR=5.953
TJU_2 / p-TJUMM_6 449 8378	224 8154 225 534.786	0.501 3	3.175 2.099	0.969 (2 p-VCUBE_6 A INRIA-WILLOW_3 p-SYS_5 TJU_2 p-TJUMM_3
ТЈU_2 / p-ТЈUMMM_7 449 5814	197 5617 252 368.395	0.561 2	2.403 2.164	0.969 0	. 980
TJU 2 / p-TJUMM 8 449 3482	152 3330 297 218.400		1.753 2.230		. 980
TTandGT_1 / p-EVAL_1 449 8	0 8 449 0.525		1.003 0.525		. 003
		1.000		1.000	

Evaluation Results – PeopleSplitUp

	Analysis Report	#Ref	#Sys	#CorDet	#FA	¥Miss #	Act. RFA	Act. PMiss	Act. DCR	Min RFA	Min PMiss N	lin DCR	-			
	CMU_2 / p-VCUBE_1	187	5787	60	5727	127	375.609	0.679	2.557	2.689	0.984	0.997				
	CMU_2 / p-VCUBE_10	187	31	2	29	185	1.902	0. 989	0.999	1.443	0.989	0.997		DET for PeopleS	plitUp Event	
	CMU_2 / p-VCUBE_11	187	9351	28	9323	159	611.456	0.850	3.907	0.721	0.995	0.998	1.000		1.100 1.200 1 1 1	
	CMU_2 / p-VCUBE_2	187 1	5201	161	15040	26	986.409	0.139	5.071	11.674	0.930	0. 989	99.9			
	CMU_2 / p-VCUBE_3	187	4713	52	4661	135	305.695	0. 722	2.250	7.149	0.952	0. 988	99.5			
	CMU_2 / p-VCUBE_4	187	265	11	254	176	16.659	0.941	1.024	3.017	0.973	0. 988	99			
	CMU_2 / p-VCUBE_5	187	31	2	29	185	1.902	0. 989	0.999	1.443	0.989	0.997	98			
	CMU_2 / p-VCUBE_6	187 1	2779	145	12634	42	828.610	0.225	4.368	11.150	0.936	0.992	95 —		the second se	
	CMU_2 / p-VCUBE_7	187	4514	51	4463	136	292.709	0.727	2.191	7.214	0.947	0. 983	8 90 0.900		a set of the	~~
	CMU_2 / p-VCUBE_8	187	281	17	264	170	17.315	0.909	0.996	4. 525	0.963	0.985	80 0.800		- Alton	<u> </u>
	CMU_2 / p-VCUBE_9	187	42	3	39	184	2.558	0. 984	0.997	2.230	0.984	0.995	0.700 60		I at a loss	and a
	INRIA-WILLOW_3 / p-SYS_1	187 3	8949	163	38786	24 2	2543.808	0.128	12.847	0.066	1.000	1.000	0 500		- ///// /	11
	INRIA-WILLOW_3 / p-SYS_2	187	7650	60	7590	127	497.796	0.679	3.168	0.066	1.000	1.000	40			1
	INRIA-WILLOW_3 / p-SYS_3	187 3	8949	163	38786	24 2	2543.808	0.128	12.847	0.066	1.000	1.000	20			
	INRIA-WILLOW_3 / p-SYS_4	187	7650	62	7588	125	497.664	0.668	3.157	0.066	1.000	1.000	10 0 100			E o
	INRIA-WILLOW_3 / p-SYS_5	187 3	8949	158	38791	29 2	2544 . 135	0.155	12.876	0.066	1.000	1.000	5		10 100	1000
	A 272-a / 2 WOLLTW-ALTRIC	187	7650	65	7525	122	497 468	0.652	3 140	0.066	1 000	1 000	0.01	0.1 1 RFA (in Ever		1000
	PKU-IDM_5 / p-eSur_1	187	147	12	135	175	8.854	0. 936	0. 980	8.067	0.936	0.976	p-VCUBE 1	Actual DCR=4.368	Actual DOR=12.876 INRIA-WILLOW_3 p-SYS_6	Actual DCR=3.483 V
	PKU-IDM_5 / p-eSur_2		157	13	144	174	9.444	0, 930	0.978	4. 788	0.936	0.960	DCR=2.557 o	Actual DCR=2.191 v	Actual DCR=3.140	Actual DCR=3.036
	PKU-IDM_5 / p-eSur_3	187	3848	11	228	176	14.954	0.941	1.016	0.066	1.000	1.000	-VCUBE_10	CMU_2 p-VCUBE_8	PKU-IDM_5 p-eSur_1	TJU_2 p-TJUMM_5
	PKU-IDM_5 / p-eSur_4	187	167	16	136	171	8.920	0.914	0.959	8.920	0.914	0.959		CMU_2 p-VCUBE_9	PKU-IDM_5 p-eSur_2 V	TJU_2 p-TJUMM_6
	TJU_2 / p-TJUMM_1	187 1	4601	157	14444	30	947.320	0.160	4.897	5.771	0.963	0.991	al DCR=3.908	Actual DCR=0.997 o	Actual DCR=0.978 v	Actual DCR=2.083
	TJU_2 / p-TJUMM_2	187 1	0303	80	10223	107	670.483	0.572	3.925	6.034	0.963	0.993	2 p-VCUBE_2 al DCR=5.071 v	INRIA-WILLOW_3 p-SYS_1 Actual DCR=12.847 L	PKU-IDM_5 p-eSur_3 Actual DCR=1.016	TJU_2 p-TJUMM_7 Actual DCR=1.675
	TJU_2 / p-TJUMM_3	187	8854	74	8780	113	575.843	0.604	3.483	6.165	0.963	0.993		INRIA-WILLOW_3 p-SYS_2	PKU-IDM_5 p-eSur_4	TJU_2 p-TJUMM_8
	TJU_2 / p-TJUNN_4	187	7421	70	7351	117	482.121	0.626	3.036	2. 689	0.984	0.997	al DCR=2.250 c	Actual DCR=3.168 INRIA-WILLOW_3 p-SYS_3	Actual DCR=0.959 :: TJU_2 p-TJUMM_1	Actual DCR=1.338
	TJU_2 / p-TJUMM_5	187	5787	60	5727	127	375.609	0.679	2.557	2.689	0.984	0.997	al DCR=1.024 c	Actual DCR=12.847	Actual DCR=4.897 n	Actual DCR=1.008
	TJU_2 / p-TJUMM_6	187	4290	57	4233	130	277.624	0, 695	2.083	6.886	0.963	0.997	2 p-VCUBE_5	INRIA-WILLOW_3 p-SYS_4	TJU_2 p-TJUMM_2	
	TJU_2 / p-TJUNN_7	187	2784	42	2742	145	179.836	0.775	1.675	2. 755	0.984	0.998	2 p-VCUBE_6	INRIA-WILLOW_3 p-SYS_5	TJU_2 p-TJUMM_3	
A	TJU_2 / p-TJUMM_8	187	1515	28	1487	159	97.526	0.850	1.338	2. 755	0.984	0.998				
(TTandGT_1 / p-EVAL_1	187	43	1	42	186	2, 755	0. 995	1.008	2. 755	0.995	1.008				~~~
1		,	in the second second		,	and a second		,		(1			33

Evaluation Results - Embrace

				DET for Embrace Event	
<u>Analysis Report</u> #Ref #Sys	#CorDet #FA #Miss Act. RFA Ac	t. PMiss Act. DCR Min RFA Min	PNiss Min DCR	1.100 <u>,200</u>	
BUPT-MCPRL_2010092204 / c-contrast_1 175 3155	55 3100 120 203.316	0.686 1.702 0.197	1.000 1.001 99.9		
BUPT-MCPRL_2010092204 / p-baseline_1 175 4171	59 4112 116 269.688	0.663 2.011 0.197	1.000 1.001		
CMU_2 / p-VCUBE_1 175 10691	137 10554 38 692.192	0.217 3.678 0.066	0.994 0.995 99		
CMU_2 / p-VCUBE_10 175 525	21 504 154 33.055	0.880 1.045 1.574	0. 983 0. 991 98		
CMU_2 / p-VCUBE_11 175 20080	146 19934 29 1307. 386	0.166 6.703 1.377	0.989 0.996 ⁹⁵	A REAL	
CMU 2 / p-VCUBE 2 175 23500	137 23363 38 1532, 279	0.217 7.878 15.347			
CMU_2 / p-VCUBE_3 175 12270	143 12127 32 795. 358		0. 983 0. 990 😤 80 0.800		
CMU 2 / p-VCUBE 4 175 3454	91 3363 84 220, 565		0.983 0.991 60 -		
CMU_2 / p-VCUBE_5 175 410	16 394 159 25.841		0.983 0.991 40		
CMU_2 / p-VCUBE_6 175 27465	139 27326 36 1792.195	0.206 9.167 24.201	0.851 0.972 0.300		
CMU_2 / p-VCUBE_7 175 11811	144 11667 31 765.189		0.989 0.990		
CMU_2 / p-VCUBE_8 175 3721	94 3627 81 237.879		0 024 0 004		
CMU_2 / p-VCUBE_0 175 5721 CMU_2 / p-VCUBE_9 175 551	26 525 149 34.432		0.989 0.990 0.01	0.1 1 10 100 1000	
				RFA (in Events/Hour)	
INRIA-WILLOW_3 / p-SYS_1 175 33637	152 33485 23 2196.138	0.131 11.112 0.066	1.000 1.000 -DCR lines	Actual DCR=4.003	Actual DCR=1.028
INRIA-WILLOW_3 / p-SYS_2 175 7729	92 7637 83 500.878	0.474 2.979 0.066	1.000 1.000 contrast_1	CMU_2 p-VCUBE_8	PKU-IDM_5 p-eSur_3▲ Actual DCR=1.015 ∧
INRIA-WILLOW_3 / p-SYS_3 175 33637	149 33488 26 2196. 334	0.149 11.130 0.066	1.000 1.000 CR=1.702 •		PKU-IDM_5 p-eSur_4
INRIA-WILLOW_3 / p-SYS_4 175 7729	90 7639 85 501.009	0. 486 2. 991 0. 066	I. UUU I. UUU – DCR=2.011 🗖	Actual DCR=1.024	Actual DCR=0.989
INRIA-WILLOW_3 / p-SYS_5 175 33637	152 33485 23 2196. 138		1.000 1.000	INRIA-WILLOW_3 p-SYS_1	TJU_2 p-TJUMM_1+
INRIA-WILLOW_3 / p-SYS_6 175 7729	91 7638 84 500.944		1.000 1.000 DCR=3.678	Actual DCR=11.112	Actual DCR=7.621
IDC DITUE / CVC 1 17E CA	0 EE 166 2.607	0.040 0.007 9.540	0.040 0.000	INRIA-WILLOW_3 p-SYS_2	TJU_2 p-TJUMM_2
PKU-IDM_5 / p-eSur_1 175 147	4 143 171 9.379	0.977 1.024 0.066	1.000 1.000 CR=1.04	Actual DCR=2.979	Actual DCR=6.267
PKU-IDM_5 / p-eSur_2 175 158	4 154 171 10.100	0.977 1.028 2.296	0.983 0.994 /CUBE_1	INRIA-WILLOW_3 p-SYS_3	TJU_2 p-TJUMM_3
PKU-IDM_5 / p-eSur_3 175 821	3 98 172 6.427	0.983 1.015 1.640	0.989 0.997 ^{CR=6.70}	Actual DCR=11.130 o	Actual DCR=5.427
PKU-IDM_5 / p-eSur_4 175 925	6 71 169 4.657	0.966 0.989 4.788	0.960 0.984 -VCUBE_	INRIA-WILLOW_3 p-SYS_4	TJU_2 p-TJUMM_4
IJU Z / D-IJUMIN I 175/22882	140 22/30 23 1431.157	0.100 1.022 20.125	U. 880 U. 984 _vcuBE_3	Actual DCR=2.991	Actual DCR=4.563
TJU_2 / p-TJUMM_2 175 18808	149 18659 26 1223. 764		0.994 0.995 CR=4.160	Actual DCR=11.112	Actual DCR=3.678
TJU_2 / p-TJUNN_3 175 16152	144 16008 31 1049. 896		0.994 0.995 -VCUBE_4	INRIA-WILLOW_3 p-SYS_6	TJU_2 p-TJUMM_6
TJU 2 / p-TJUNN 4 175 13482	142 13340 33 874. 913		0.994 0.995 ^{CR=1.583}	Actual DCR=2.985 ⊽	Actual DCR=2.933
TJU 2 / p-TJUMM 5 17510691	137 10554 38 692.192	0.217 3.678 0.066	0.994 0.995 VCUBE_5	IPG-BJTU_5 p-SYS_1	TJU_2 p-TJUMM_7
			DCP=1.038 -	Actual DCR=0.967 ö	Actual DCR=2.249 o
TJU_2 / p-TJUNN_6 175 8162			0.869 0.992 -vcube_6	PKU-IDM_5 p-eSur_1	TJU_2 p-TJUMM_8
TJU_2 / p-TJUNN_7 175 5890	113 5777 62 378.889		0.846 0.986 _{CR=9.167} •	Actual DCR=1.024 o	Actual DCR=1.685
TJU_2 / p-TJUNN_8 175 3672	86 3586 89 235.190	0.509 1.684 29.645	0.834 0.983 -vcube_7	PKU-IDM_5 p-eSur_2	

Summary

Our participation in TRECVID-ED 2010

- Submitted 4 event detection results
- 3 of them obtain improvements over the best results of last year, especially on correct detection rate
- Still have a much room for performance improvement!

Making progress towards correct directions

- Selective eigenbackgrounds to enable more effective foreground object extraction
- Multi-Pose Learning for head-shoulder detection to address the data confusion problem
- Sequence Learning for event detection: SVM-HMM by modeling the activity as sequence structure and exploring dynamics of the pattern within an event.

THANKS

Member: Yonghong Tian^a, Yaowei Wang^a, Lei Qing^c Kaihua Jiang^b, Zhipeng Hu^a, Zhongwei Chen^c, Guochen Jia^a, Ten Xu^a, Qiong Hu^c, Qiong Hu^c, Guangcheng Zhang^b

^a National Engineering Laboratory for Video Technology, Peking University
 ^b Speech and Hearing Research Center, Peking University
 ^c Key Lab of Intel. Inf. Proc., Institute of Computing Technology, Chinese Academy of Sciences

