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Abstract 

Approach we have tested in each of your submitted runs. For the “Object Put” event, we followed a dual 

foreground segmentation approach where the output difference between a short term and a long term model 

is used for triggering potential alerts. For Pointing, Embrace, CellToEar and PersonRuns, we applied the 

learning of compound spatio-temporal features based on a data mining method. 

Relative contribution of each component of our approach. Our system is based on an action recognition 

approach which is mining spatio-temporal corners in order to detect configurations, called Compound 

Features, typical of an action of interest. The final detection is based on blobs around local frame-to-frame 

changes that are containing enough relevant compound features. 

What we learned about runs/approaches and the research question(s) that motivated them. Overall, 

performances have improved from last year especially for PersonRuns. In addition, the training for 

PersonRuns was based on a standard action recognition dataset (KTH) independent of the TrecVid dataset 

which indicates that our implementation is behaving as expected. For Pointing, Embrace and CellToEar, 

results are not satisfying yet and the main reason is probably due to the fact that the training dataset derived 

from the development videos presents a large variability, is too noisy and too small in size in order to 

produce good rules. Also, given the complexity of the scenes composed of multiple action occurrences, 

occlusions and complex actions, the direct application of an action recognition method is a challenge. 

Going forward, performances could be improved if combined with other approaches such as a person 

tracker and also if the quality of the training set could be improved. 

Introduction 
 

This is the second year of participation for CRIM to the SED task and this time we provided results on five 

events by adding the Embrace and CellToEar ones. For this year, we focused primarily on improving the 

action recognition algorithm that used to be at the heart of our Pointing method in 2010 but was adapted 

this year for PersonRuns, Pointing, Embrace and CellToEar. The size of the training sets was significantly 

increased and was supplemented by the standard action recognition dataset KTH [4]. 

 

All the computations were performed on the “Mammouth” supercomputer located at the Center for 

Scientific Computing at the Université de Sherbrooke.  
 

I – Object Put Event 
 

The “Object Put” algorithm was unchanged from last year and is based on a very simple dual background 

model approach described in [1]. This year we were aiming at optimizing the detection threshold and the 

learning rate values for the short and long term models. The performance on Eval08 after parameter tuning 

is shown in Figure 1. However, this new set of parameters didn’t lead to better performances compared to 

last year (see Section III). 



 

Figure 1: DET curve on Eval08 for ObjectPut. 

 

II – Action Recognition 
 

We pursued last year’s implementation of an action recognition approach based on the hierarchical learning 

of Compound Features (CF) proposed recently by Gilbert et al. [2][3]. This method was then applied to 

PersonRuns, CellToEar, Pointing and Embrace. The following steps are involved: 

1. Build an overcomplete set of Harris corners at various spatial scale and in the temporal domain. 

2. Group corners within a 3x3x3 neighbourhood to form CF 

3. CF are then encoded using information about cell position, scale and corner type to form 

transactions (or itemsets). 

4. A data mining algorithm (APriori algorithm [5]) is applied in order to extract frequent itemsets 

from all the recorded level 1 transactions observed on the training set. 

5. Transaction rules and associated confidence levels are derived from the frequent itemsets. 

6. Rules that have fired at level 1 are used to form CF within a 6x6x6 neighbourhood at level 2. 

7. The same data mining algorithm (step 4) is applied on level 2 transactions. 

8. A third level of CF is formed but with a 2x2x2 spatio-temporal neighbourhood with cells 

extending to the limit of the image. 

The last level (step 8) implicitly assumes that only one instance of a particular action is taking place at the 

same time which is of course rarely the case in the TrecVid data. Therefore, we slightly modified the last 

stage so that the spatial extent of the neighbourhood takes into account the expected size of a person given 

a position in the image and is derived from our camera geometric model (see [1] for details). 

 

Training 
 

Compared to last year, we greatly increased the number of training samples. In addition to samples taken 

from the evaluation set we added videos from the KTH dataset [4]. 

 

For Pointing, Embrace and CellToEar, we manually annotated some events in the TrecVid development set 

with the following guideline: 

1. No action mixing (e.g. no walking and pointing). 

2. No occlusions  

3. The bounding box should encompass the total spatial extent of the event. 

4. One single occurrence of the event during the event timeframe. 



 

The resulting number of training samples is shown in Table 1. The negative examples were taken from the 

same TrecVid videos but outside the event bounding box. We also added training samples for which the 

video frame has been flipped horizontally; otherwise learned rules may be biased by the dominant people 

motion (for instance, most people move from left to right in Camera 1). So the total number of positive 

events for Pointing is 620 with a majority of events taken from Camera 1. For PersonRuns, because it was 

too difficult to build a ground truth on the TrecVid videos, we chose instead to take the KTH videos for the 

Running/Jogging actions as positive samples (25 persons running 4 times in 4 videos) and the Walking 

action as negative. 

 

 

Table 1: Size of the training set for each event. 

 

The resulting number of transactions at level 1 went from 1 million last year to about 30 millions for this 

year. The data mining algorithm (Apriori [5]) was run so that we are looking for rules with a minimum 

support of 5% and a minimum confidence level equal to the fraction of positive transactions if greater than 

20%. The minimum support threshold is necessary in order to make sure that the derived rules are 

statistically significant. We also limited the rule size to 5 as recommended by [2]. For PersonRuns, we get 

3886 rules at level 1, 3599 at level 2 and 147848 rules at level 3. 

 

Detection 
 

Another important issue is how to take a reliable decision in the presence of an event in a scene where 

many other actions are taking place (e.g. people walking). The original method derives a probability map 

from the firing rules as shown in Figure 2, in order to improve the map, we applied a Gaussian and 

temporal filtering; however this map is still difficult to threshold.



 

  

  

Figure 2: Rules firing for PersonRuns (top left) and corresponding probability map (top right, dark 

means high probability value). Rules firing for Pointing (bottom left) and corresponding probability 

map (top right, dark means high probability value). 

 

Therefore, we adopted a simpler approach where we segment the frame-to-frame difference image leading 

to areas of motions (see Figure 3). We then compute the density of rules firing within each region of 

changes. The region with the higher rule density value is chosen and triggers an event if the average 

confidence value within this region is above a given threshold. 

 

 

Figure 3: Action detection for PersonRuns based on a blob from a change detection. 



 

III - Results 
 

Results on the Development Set (Eval08) 
 

We evaluated the performance on the Eval08 dataset (25 videos). We can see that the performance for 

PersonRuns (Figure 4 - left) was significantly increased when compared to last year’s result on Eval09 with 

a global Min NDCR at 0.958 (PMiss=0.9221, RFA= 7.13). For Pointing (Figure 4 - right), the performance 

also increased notably with a shift of the DET curve to the left by one order of magnitude. For Embrace 

(Figure 5 - left), results are still one order of magnitude larger than the other teams in terms of RFA except 

maybe for Camera 5. Performance for CellToEar (Figure 5 - right) is similar to Embrace and close to 

performance levels reached by other teams last year. 

 

 

Figure 4: DET curves for PersonRuns and Pointing on the Eval08 dataset. Last year Min NDCR 

position for CRIM is shown as a red diamond marker. 

  



Figure 5: DET curves for Embrace (left) and CellToEar (right) on the Eval08 dataset. Last year Min 

NDCR position for CRIM is shown as a red diamond marker. Black crosses indicate Min NDCR 

positions on Eval09 by the other teams during the TrecVid-2010 competition. 

 

Results on the Test Set (Eval09) 

 

Results provided by NIST (see Table 2 and Figure 6 below) on Eval09 are consistent with what we 

observed on Eval08, the best Min NDCR was obtained for PersonRuns. However, the level of false alarms 

is higher for Pointing compared to Embrace and CellToEar despite the fact that it is based on a larger 

training set. 

 

 

Figure 6: DET curves for PersonRuns and Pointing on the Eval09 dataset. 

 

Table 2: Actual Miss rate and False Alarm rates on Eval09 for each event. 



 

 

Conclusions 
 
For our second year in this SED evaluation campaign, the objective was to improve results from last year 

especially regarding the level of false alarms. We also provided results for two more events (CellToEar and 

Embrace). Results from the action recognition method are mixed due to the difficulty to form a clean 

training set from the TrecVid videos. Results on PersonRuns are promising but the detection step based on 

blobs is probably not optimal in all situations (e.g. someone running among a walking crowd). 

 

The original action recognition method was not designed for a scene with multiple occurrences of the same 

action (e.g. several people walking). In particular, the last step of the method is problematic as it looks for 

rules in the entire image. We modified this step for a local approach with a neighborhood function of the 

camera geometric model. Results on the various cameras show that the performance is affected by the level 

of clutter and the object resolution in the scene. Cameras 1 and 4 with lesser depth of view have generally 

better results. 

 

Increasing the training database will likely require the use of a 64-bit version of the APriori algorithm as 

we have reached the memory limit under windows 32-bit (~ 2 Gb in memory). However, the main 

difficulty for the training is to build a “clean” database of action units. The few samples taken from the 

evaluation corpus usually exhibit large variations in pose, background clutter and are usually composed of 

a mixture of actions (e.g. person walking and pointing). An idea could be to supplement the TrecVid 

samples with an in-house database in order to reinforce relevant action patterns. 

 

The detection process needs to be refined also. We have adopted a strategy different from Gilbert et al. but 

that is probably not optimal in all situations. The current version runs on smaller frame size at about 4-5 

fps, this loss of resolution does not help the detection process especially for actions in the background. 
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ABSTRACT

We report results on content-based audio and video copy detec-
tion for TRECVID 2011 CBCD evaluation using nearest-neighbor
mapping. The nearest-neighbor mapping was used successfully in
audio copy detection for TRECVID 2009 with excellent results (min
NDCR of 0.06 averaged over all seven transforms for actual no FA
case). For this reason, we decided to implement nearest-neighbor
mapping for video copy detection also. For video copy detection
using nearest-neighbor mapping, the idea is to first map each video
frame of the test to the closest query video frame. We then move the
query over the test to find the test segment with the highest number
of matching frames. This nearest-neighbor mapping lead to good
matching scores even when the query video was distorted and con-
tained occlusions. We test these algorithms on TRECVID 2009 and
2010 content-based copy detection evaluation data. For both these
tasks, the nearest-neighbor video copy detection gives minimal nor-
malized detection cost rate (min NDCR) comparable to that achieved
with audio copy detection for the same task.

We augment audio copy detection by using three different
feature parameters: MFCC, equalized MFCC, and Gaussianized
MFCC. Pooling the results from the three feature parameters gives
the lowest miss rate, and when combined with video copy detec-
tion, we get significantly improved audio+video copy detection re-
sults. For TRECVID-2011 CBCD evaluation, we get the lowest min
NDCR for 25 out of 56 transforms for the actual no FA case. All our
runs (V48A66T58B, V48A66T65B, V48A66T160, V48A66T60)
were the same except for the thresholds.

Index Terms— audio copy detection, video copy detection,
content-based copy detection.

1. INTRODUCTION

There are many applications of audio and video copy detection: for
copyright control, for monitoring advertisement campaigns of busi-
nesses, for monitoring ads of competitors for business intelligence,
and for law enforcement investigations. Content-based copy detec-
tion offers an alternative to watermarking. In watermarking, only the
content that has been watermarked can be detected, while content-
based copy detection can detect any copy for which there is a copy
in the search database.

The content-based copy detection got a big boost with the
TRECVID-2008 CBCD (content-based copy detection) evaluation,
and has continued with TRECVID 2009, 2010, and 2011 evalua-
tions. Many research labs have participated in these CBCD evalua-
tions with many different algorithms for copy detection. The copy

1Parisa Darvish is now with Genetec Inc, Montreal,
pdarvish@genetec.com

detection performance has improved significantly in the last 3 years.
In TRECVID 2008, the emphasis was on copy detection with only
a small penalty for false alarms. In TRECVID 2009, the empha-
sis shifted to no FA (false alarms) case, with a penalty of 1000 for
each false alarm. The no FA case was divided into two: optimal
and actual. In the optimal case, a separate threshold for rejection per
transform (see Sec. 5) is computed to minimize NDCR (normalized
detection cost rate). In the actual case, one threshold for all the trans-
forms is specified a priori by the participants. This threshold is then
used to estimate the min NDCR for all the transforms. So the actual
case is much more difficult than the optimal case.

TRECVID 2009 is the last time when NIST evaluated audio,
video, and audio+video copy detection separately. For this evalu-
ation, CRIM achieved the lowest min NDCR for audio only copy
detection [1] for all categories (optimal balanced, actual balanced,
optimal no FA, actual no FA) and for all the seven transformations
of the audio queries. Most of our results were around min NDCR of
0.06. This was primarily due to the nearest-neighbor mapping [2][3]
that was used to map test frames to the nearest query frames. For
TRECVID 2009 Video only copy detection, ATT labs [1][4] got the
lowest min NDCR for optimal no FA runs. Their min NDCR varied
between 0.22 to 0.68. The best actual no FA results were shared by
three different labs (for different transforms) [1], and the min NDCR
varied between 0.22 and 0.69. Even though CRIM got only average
results in video only copy detection evaluations for TRECVID 2009,
we still got the lowest min NDCR for audio+video evaluations for
actual balanced and actual no FA runs for all the 49 transforms [1].
This was primarily due to the audio only copy detection results.

Because nearest-neighbor mapping gave such good results for
audio copy detection, we decided to implement it for video copy
detection also. The first step in video copy detection using nearest-
neighbor mapping is to choose frame-based local video features that
are suitable for nearest-neighbor search. In 2010 TRECVID CBCD
evaluations, Peking University [5] [6] got the lowest min NDCR.
They used many different detectors over local and global visual fea-
tures, and then fused the results. It is difficult to pick one feature
that stands out. However, NTT [7] also got very good results with
only one feature set: temporally normalized local visual features.
We used these features as our starting point. We computed seven
discrete temporally normalized features per frame and used these
features to search for video copies. Using these features, we show
that the nearest-neighbor search outperforms the search algorithm
similar to that used by NTT. We also show that 16 unquantized fea-
tures worked much better than the seven quantized features when we
use nearest-neighbor search. The min NDCR for video copy detec-
tion that we achieved for TRECVID 2009 data varies between 0 and
0.097. This is better than the average min NDCR of 0.06 that we
achieved for audio copy detection in TRECVID 2009. This is better
than the best TRECVID 2009 video only copy detection results (with



min NDCR varying between 0.22 and 0.68) [1].

We have enhanced audio copy detection by using three different
feature parameters for search: MFCC, equalized MFCC and Gaus-
sianized MFCC. The Gaussianized MFCC’s gave the best results.
Pooling the three features gave the lowest miss rate. We report re-
sults on both TRECVID-2010 queries and TRECVID-2011 queries
with these new audio and video copy detection algorithms.

2. VIDEO COPY DETECTION SYSTEM OVERVIEW

The overall system shown in Fig. 1 first computes the video finger-
prints of the video query. We tried two different video fingerprints.
One fingerprinting method is based on the video features used by
NTT for TRECVID 2010 [7]: we compute 16 averaged pixel val-
ues per frame per color (RGB). These values then go through local
temporal normalization in a window of 10 frames, and the top 7
values (based on maximum deviation from the mean) are then se-
lected for quantization. For each test frame, we then find the closest
query frame. The query frame number becomes the fingerprint for
the test frame. In the second feature set, we used 16 normalized
values per frame without quantization, and we computed the finger-
print for each test frame using these 16 unquantized features. These
fingerprints result in even lower min NDCR.

Query video
features

� Compute test
fingerprints

�
Find counts of

matching
fingerprints

�
Output start,

end, and count
of best segment

test video
features

�

Fig. 1. Video copy detection algorithm using fingerprints.

We use these fingerprints to find test segments that may be
copies of the queries. We match fingerprints by moving the query
over the test and counting the total fingerprint matches for each
alignment of the query with the test. One such alignment is shown
in Fig. 2. In this alignment, the matching test segment is identi-
fied by the matching start frame (frame 3), the last matching frame
(frame 7), and the number of fingerprint matches (3 matches). The
total count of matches over all the aligned frames is a measure of
confidence in the match. The best matching segment is the segment
with the highest count. We tried both counts and counts/sec as a
confidence measure. It turns out that counts work much better than
counts/sec. This is similar to our experience with audio copy detec-
tion [2].

fp1 fp2 fp3 fp4 fp5 fp6 fp7 fp8

fp9fp10fp7fp11fp5fp12fp3fp13fp14fp15

0 1 2 3 4 5 6 7 8 9

Test fingerprints

Query fingerprints

���
Matching fingerprints

Fig. 2. One example of matching query to a test.

3. FEATURE PARAMETERS

We experimented with two different feature parameters. The first
feature parameter is similar to the temporally normalized and quan-
tized features used by NTT [7]. These features are computed as fol-
lows: Let vc(p, t) represent RGB value of a pixel in a video frame
at time t, where p = pixel coordinate, c ∈ {R, G, B}. We divide
the frame into 16 sub-squares and compute raw RGB value xc(i, t)
in each square as

xc(i, t) =
1

|Ii|
X
p∈Ii

vc(p, t),

where Ii (i = 1, 2, ..., 16) is a whole set of pixels in the ith sub
image. The temporally normalized features yc(i, t) are computed
from xc(i, t) using a 10-frame window as follows:

yc(i, t) =
1

σc(i, t)
(xc(i, t) − μc(i, t)), where

μc(i, t) =
1

M

M−[M/2]−1X
j=−[M/2]

xc(i, t + j), and

σc(i, t) =

0
@ 1

M

M−[M/2]−1X
j=−[M/2]

(xc(i, t + j) − μc(i, t))
2

1
A

1/2

are average and standard deviation computed over a time window of
M frames.

For each color, we choose 7 features for each frame that have the
largest deviation from the temporal mean, that is, we choose seven
values of i that have the maximum values for zc(i, t) where

zc(i, t) = |(xc(i, t) − μc(i, t))|.
Each of these 7 chosen xc(i, t) values is then quantized between

0 and 5. Each of these values is stored as a (value, position) pair. In
other words, there are 21 (value, position) pairs per video frame.

We tried two different algorithms to search for a given query in
the test set using these features. One algorithm was similar to that
used by NTT [7] where we move the query over the test and count
all the matching (value, position) pairs. The test with the highest
matching count is considered the best match, and the start and end
of matches in the test correspond to the matching test segment. The
total matching count of the (value,position) pairs is used as a con-
fidence value. We call this search as value-position matching. The
results for TRECVID 2009 for transforms 3, 4, and 5 (see Sec. 5)
are shown in second row of Table 1. We use only transforms 3, 4,
and 5 because they do not contain any flip, shift or picture-in-picture
transforms. So we can use the extracted features directly for search.

The second search process we used with these features was the
nearest-neighbor search (explained in the next section). For this
search, we map each test frame to the closest query frame. To com-
pute the closest query frame, we augment the seven (value, position)
pairs with pairs (-1, position) for all the missing positions, and then
compute the absolute sum S between a test frame and a query frame
as

S =
15X

i=0

|(y′
c(i, t) − q

′
c(i, k))|.



where y
′
c(i, t) is the quantized value of yc(i, t) in position i for

the test frame t, and q
′
c(i, k) is the quantized value in position i for

the query frame k. We label the test frame as the query frame number
k that gives the lowest sum S. The nearest-neighbor k is efficiently
computed on a GPU [8]. We then search for the test frame segment
that gives the highest nearest-neighbor count (computed as shown in
Fig. 2). Table 1 compares the min NDCR for the nearest-neighbor
search (row 3) versus the value-position matching search (row 2).
The nearest-neighbor search outperforms the value-position match-
ing search. The reason is that when the query matches a test seg-
ment, the nearest-neighbors will be ordered leading to a high match-
ing count. When the query does not match a test segment, the nearest
neighbors will be random, leading to very small counts. This is sim-
ilar to our experience with audio copy detection [2].

The second feature set we used was the unquantized features
yc(i, t) for all 16 positions. For search, we used the nearest-neighbor
search with these unquantized values. The third row in Table 1 shows
the min NDCR for this feature. These features gave the best results.
So these features were used in the rest of the experiments.

Table 1. Minimal NDCR for optimal no FA for different feature pa-
rameters and search algorithms.

Transform 3 4 5

value-position matching .052 .269 .067
nearest-neighbor search: discrete features .007 .082 0.0

nearest-neighbor search: unquantized features 0.0 .037 0.0

The query goes through many transforms which affect the posi-
tion of the feature parameters. For flip transform, we flipped the 16
feature vectors of each frame of the query. This leads to two fea-
ture sets per query: flipped and unflipped features. Each feature set
is searched independently. Similarly, there were 5 picture-in-picture
(PiP) positions (upper left, upper right, lower left, lower right, and
center), and for each PiP position, there were three different sizes
(0.5, 0.4, 03). This lead to 15 additional different feature sets for
each of the flipped and non-flipped positions. So all together, we
generate 32 different feature sets per query that are searched in-
dependently. We then retain the test segment that gives the high-
est matching count (using the nearest-neighbor search). Because of
flip and picture-in-picture transforms, the search is 32 times slower.
We did not do anything for the shift transforms. It turned out that
queries with shift transforms were detected, but with significantly
lower counts (or confidence).

4. SEARCHING VIDEO QUERY IN TEST USING
NEAREST-NEIGHBOR MAPPING

The search for the test segment that matches the query is as follows.
Each test frame is labeled as a frame number that corresponds to the
query frame closest to the test. For example, in Fig. 3, the number
inside each test frame corresponds to the query frame closest to that
test frame. Frame 0 of the test matches frame 4 of the query, frame
1 of the test matches frame 1 of the query, ... We keep a count c(i)
for each frame i of test as a possible starting point for the query. In
other words, count c(i) corresponds to the total number of frames
that match when the query is overlaid on top of the test starting with
frame i (same as shown in Fig. 2). This is computed incrementally as
follows. Assume that for each test frame i, m(i) is the query frame
closest to the test frame i. Then for each test frame i, we increment
the count c(i − m(i)). We also update the starting test frame, and

the last test frame corresponding to frame (i − m(i)). The count
c(j) then corresponds to the number of matching frames between
the test and the query if the query was overlaid starting at frame j.
The frame j with the highest count c(j) and the corresponding start
and end matching frames is the best matching segment. The final
matching counts for the search example are shown in the bottom row
of Fig. 3. In the given example, frame 3 of the test has the highest
matching count. These counts are accumulated separately for each
color (RGB) and then summed to get the final count.

4 1 4 0 2 1 3 4 test

counts00013101

0

1

2

3

4

query

nearest neighbor

�

�

Fig. 3. One example search using NN fingerprints.

5. DATASET FOR COPY DETECTION

The data for copy detection for TRECVID 2009 comes from NIST
sponsored TRECVID 2008 and 2009 CBCD evaluations [9] [10].
The queries are from the TRECVID 2009 evaluations. In TRECVID
2009, there were 201 original video queries transformed 7 different
ways (Transforms 2, 3, 4, 5, 6, 8, 10 in Table 2). Each original query
is supposed to occur one or zero times in the test video. The test set
for TRECVID 2009 consists of a total of 385 hours of video.

For the 2010 and 2011 TRECVID copy detection evaluations,
the test set consists of roughly 12000 videos from internet archives
for a total of 400 hours of video. There are 201 original video queries
(different from 2009) transformed 8 different ways (transforms 1 2
3 4 5 6 8 10).

Table 2. Query video transforms used in TRECVID CBCD evalua-
tions.

Transform Description

T1 Cam Cording
T2 Picture in picture (PiP) Type 1:

original video in front of background video
T3 Insertions of pattern
T4 Strong re-encoding
T5 Change of gamma

T6, T7 Decrease in quality: blur, gamma, frame dropping,
contrast, compression, ratio, white noise

T8, T9 Post production transforms: crop, shift, contrast,
caption, flip, insertion of pattern, PiP type 2

T10 Combination of everything

The audio queries for TRECVID 2009, 2010, and 2011 are
transformed 7 different ways as shown in Table 3. The last three
transforms where the audio is mixed with irrelevant speech are par-
ticularly difficult to detect.



Table 3. Query audio transformations used in TRECVID
2009/2010/2011.

Transform Description

T1 nothing
T2 mp3 compression
T3 mp3 compression and multiband companding
T4 bandwidth limit and single-band companding
T5 mix with speech
T6 mix with speech, then multiband compress
T7 bandpass filter, mix with speech, compress

6. VIDEO COPY DETECTION RESULTS

6.1. TRECVID 2009 results

The copy detection using the 16 floating-point temporally normal-
ized values per frame was run on 1407 queries and 385 hours of test
video from TRECVID 2009 CBCD evaluations. The min NDCR for
the optimized no false-alarm case (Rtarget = 0.5/hr, CMiss = 1, CFA
= 1000)[9] are shown in Table 4. Note that when we search 32 sets
of features (Table 4) instead of one (row 4, Table 1), the min NDCR
for transform 4 goes up from 0.037 to 0.052. Since we are searching
32 times, the mean processing time per query varies from 591 secs
to 1052 secs. The reason for CPU time variation is that we terminate
the computing whenever we get a match with a count greater than
50.

Table 4. Min NDCR for 2009 video queries for no FA for features
with 16 unquantized values/frame using nearest-neighbor search.

Transform 2 3 4 5 6 8 10

min NDCR .022 0 .052 0 0 .037 .097
mean F1 .818 .816 .808 .801 .812 .833 .798

avg proc time 1052 589 645 593 591 632 765

These results (Table 4) are probably the best published results
on video copy detection for TRECVID 2009 [1]. In general, the min
NDCR for video copy detection is significantly worse than for audio
copy detection, but these results are better than the min NDCR we
achieved on audio copy detection for the same task [2]. Our audio
copy detection results from this paper are shown in Table 5. When
we compare Table 4 with Table 5, we can see that min NDCR for
video copy detection is significantly better than that for audio copy
detection except for transform 10.

Table 5. Min NDCR for optimal no FA for audio copy detection
using NN-based fingerprints.

Transform 1 2 3 4 5 6 7

min NDCR .052 .06 .067 .06 .06 .075 .082
mean F1 .921 .936 .924 .89 .92 .90 .90

avg proc time 20.4 20.3 20.3 20.5 20.9 21.2 21

6.2. TRECVID 2010 results

The TRECVID 2010 CBCD evaluations test set consists of com-
pletely new videos collected from the web. This new set of videos is

characterized by a high degree of diversity in creator, content, style,
production qualities, orginal collection device/encoding, language,
etc - as is common in much of web video. In 2009, there were 838
test video files for a total of 385 hours of video. In 2010, there are
over 12000 files for a total of 400 hours of video. In other words,
these videos are in general less than 4.1 minutes in duration. Many
of these videos are slide shows with varying durations of each slide.

In compiling the copy detection results, we noticed that there
were many duplicate test files for many queries. To compile the re-
sults correctly, we removed these duplicate files. The final results
using the unquantized 16 values per frame features with nearest-
neighbor search are shown in Table 6. Note that the mean process-
ing time per query is around 2100 secs. The reason is that we can-
not terminate the processing when we find a reference with count
greater than 50, because there can be multiple test videos matching
the query. In such a case, only one of these video matches will have
a matching audio (the correct choice). Also, the evaluation rules
require us to find all the duplicates.

Table 6. Min NDCR for 2010 video queries for no FA for features
with 16 unquantized values/frame using nearest-neighbor search.

Transform 1 2 3 4 5 6 8 10

min NDCR .62 .455 .045 .18 .03 .142 .187 .27
mean F1 .82 .80 .83 .82 .83 .81 .83 .81

As we can see from Table 6, the min NDCR is significantly
worse for 2010 data than for 2009 data. The reason is simple. In
2009 videos, there are no slide shows, while 2010 data has several
slide shows. The feature parameters we have used are based on tem-
poral variability. When there is no temporal variability, then the fea-
tures are either zero or one. This leads to many more false matches.
For 2009 data, the largest count for false alarms is 36, while the
largest count for false alarms for 2010 data is 51. This affects signif-
icantly the picture-in-picture (PiP) transforms. Inherently, PiP trans-
forms show significantly fewer matches than for videos without PiP.
With the false alarm threshold going up, all the transforms with PiP
(transforms 2, 8 and 10) are adversely affected. Transforms 4 and
6 have lower resolution, and they are similarly adversely affected.
Transform 1 is camcording, and the video frames have a lot of jit-
ter, leading to fewer matches and therefore they are also adversely
affected by the higher threshold for false alarms.

The optimal no FA results shown in Table 6 use separate thresh-
old for each transform. In reality, we do not know a priori which
transform is being used. So, in actual case, we can only use one
threshold across all transforms. Table 7 gives results when we use
one threshold across all transforms. For 2009 queries, this threshold
was 36, while for 2010 queries, this threshold was 51. We notice
that for 2009 queries, except for transform 10, the min NDCR is
the same as it was for one optimal threshold per transform. For the
2010 queries, min NDCR has gone up for all transforms except for
transform 5. This increase is primarily due to the slide shows, which
result in higher threshold for the false alarms. We probably need to
use static feature parameters for the slide shows in order to reduce
these false alarms.

7. AUDIO COPY DETECTION

For audio copy detection also, we used the nearest-neighbor finger-
prints to search for copies of the query in the test set. We followed
audio copy detection algorithms similar to those used in [2]. In



Table 7. Min NDCR for 2009 and 2010 video queries for no FA case
when we use one threshold across all transforms.

Transform 1 2 3 4 5 6 8 10

2009 .022 0 .052 0 0 .037 .12
2010 .71 .455 .045 .186 .03 .164 .238 .29

[2], we first did a fast search using energy difference fingerprints
to narrow the search to a few choices. These choices were then
rescored using the nearest-neighbor fingerprints derived from cep-
stral features and its first differences. For the TRECVID 2009 task,
this scheme worked very well. However, for TRECVID 2010 task,
the fast search using the energy difference features missed too many
correct choices. So for TRECVID 2010, we switched to a complete
search with the nearest-neighbor fingerprints. This gave much better
min NDCR than searching with energy difference fingerprints, and
then rescoring with the nearest-neighbor fingerprints.

Even in this new scenario, the results for TRECVID 2010 were
significantly worse than what we had achieved in TRECVID 2009
[2]. We soon found out that the problem was the silent segments in
the audio files. Many audio queries and audio test files have silent
segments that are exactly the same. So we used a voice activity de-
tector to locate silent segments. These silent segments were skipped
when computing the matching counts. Otherwise, the entire algo-
rithm was the same as in Sec. 4. Even with this change in the test
and query files, there remained some short audio segments that were
entirely zeros. These segments seemed to be some kind of filler seg-
ments for video frame timing synchronization with audio. We wrote
a small perl script to identify all audio segments over 100 ms long
that were entirely zeros. These segments were similarly skipped dur-
ing nearest-neighbor search. These two changes made the audio only
min NDCR for TRECVID 2010 much more reasonable.

7.1. Results on 2010 queries

While compiling the audio only copy detection results, we found
many duplicate audio test files. Some duplicates were both au-
dio+video duplicates, while some were audio only duplicates (videos
did not match). For audio only processing, we removed both these
duplicates in order to compare relative performance of different
feature sets. The audio only duplicates were not removed for au-
dio+video combined search.

There is another issue with the audio test files. Because these
files are collected from internet archives, many audio files have a lot
of music. For some test files, even though the entire file may not be a
duplicate, parts of the audio are the same. This became evident when
we listened to query and test segments with high matching counts.
This happens for queries that are imposters (they are not supposed
to have a matching audio or video segment). These short matching
audio segments are the reason why the false alarm threshold has to
be high. (This was not the case in TRECVID 2009). Because of this
high threshold, the min NDCR for both the optimal and actual no FA
case is significantly higher than that achieved in [2].

The min NDCR for the cepstral and delta cepstral parameters
is shown in the second row of Table 8. The min NDCR is roughly
three times higher than the average min NDCR of about 0.06 for
TRECVID 2009 audio copy detection. To lower the min NDCR,
we tried equalized cep (by subtracting the average value of cepstral
features in each file to produce zero mean features) (row 3 in Table
8), and Gaussianized cepstra [11] (non-linear transformation of the
cepstrum so that its probability distribution becomes Gaussian in a

moving 3-sec window) (row 4 in Table 8). From Table 8, we can see
that the Gaussianized cepstral features give the lowest min NDCR.
When we combine the results from the three features (by choosing
the matching segment with the highest counts), the results (row 5 in
Table 8) are not as good as those for Gaussianized cep. For combin-
ing the results, when the test segments overlap for different features,
we keep the segment with the highest score. The mean processing
time for the combined case is shown in the last row. This process-
ing time is much higher than in [2] because we are searching with
the nearest-neighbor fingerprints (instead of energy-difference fin-
gerprints). The mean F1 has gone down because we now sum all
the overlapping matching segments, instead of choosing the largest
matching segment. This leads to lower min NDCR, but it also lowers
the mean F1.

Table 8. Minimal NDCR for different features for 2010 audio
queries for actual no FA case with one threshold for all transforms.

Transform 1 2 3 4 5 6 7

cep .156 .164 .201 .208 .231 .238 .305
equalized cep .179 .186 .186 .186 .208 .216 .223
Gaussian. cep .126 .149 .186 .156 .201 .216 .231

combined .141 .156 .201 .194 .216 .223 .276
mean F1 .69 .67 .68 .70 .69 .69 .72

mean proc time 566 563 569 566 573 575 575

When we generate combined audio+video results, the critical
value for audio copy detection is the number of missed queries.
These missed queries are shown in Table 9. As we can see from
this table, the combined features give the lowest number of missed
queries. Compared to Gaussianized features, the combined features
reduce the missed queries by 11%. These combined features were
then combined with video copy detection for audio+video submis-
sion.

Table 9. Total missed 2010 audio queries for different features.

Transform 1 2 3 4 5 6 7

cep 14 16 22 25 19 20 29
equalized cep 24 25 25 24 26 26 29

Gaussianized cep 15 17 20 18 23 26 29
combined features 14 16 18 17 18 20 28

8. AUDIO+VIDEO COPY DETECTION

We combined the audio+video submission by first generating sepa-
rately audio and video submissions with multiple choices, and then
combining the two. In combining the audio and video results, each
was given equal weight. During combination, if a query matched
both the audio and video parts, then this match was given priority
over single audio or video match. The reason is that there were a
few test videos where only the audio or video parts match. So they
are duplicates for audio only or video only. These will match the
respective audio or video queries very well, but only the correct one
will match both the audio and video queries. Also, for each query,
only the best choice was kept. This is also important, since just audio
or video matches can lead to high scores. Keeping these bad choices
will significantly lower the min NDCR. Therefore, we eliminated
these single match entries whenever both audio and video matched.



In the case where both the audio and video segments overlapped,
the resulting segment was the or of the two segments. This was nec-
essary because using only the audio segment or the intersection (of
the audio and video segments) resulted in a few false alarms. The
or reduced the F1 score compared to using just the audio segment.
However, using the or of the segments was considered a safer al-
ternative than generating false alarms with high scores. When we
combine the audio+video, we get the optimal min NDCR for the no
FA case as shown in Table 10. Note that, for optimal case, only seven
transforms have min NDCR over 0.1. In the table, transform T1 is
combination of video transform 1, audio transform 1, T2 is combina-
tion of video transform 1, audio transform 2, ..., T8 is combination
of video transform 2, audio transform 1, and so on. Note that the
mean processing time per query is between 2600 to 2700 secs, and
the mean F1 is around 0.7.

Table 10. Minimal NDCR for audio+video combined results for
2010 queries for optimal no FA case. Note T=transform.

T min T min T min T min
NDCR NDCR NDCR NDCR

T1 .052 T15 .022 T29 .022 T50 .052
T2 .06 T16 .022 T30 .022 T51 .06
T3 .104 T17 .022 T31 .022 T52 .075
T4 .09 T18 .022 T32 .022 T53 .067
T5 .179 T19 .022 T33 .022 T54 .082
T6 .142 T20 .022 T34 .022 T55 .09
T7 .164 T21 .022 T35 .022 T56 .119
T8 .045 T22 .022 T36 .022 T64 .052
T9 .045 T23 .022 T37 .03 T65 .052

T10 .097 T24 .03 T38 .03 T66 .067
T11 .067 T25 .022 T39 .03 T67 .067
T12 .127 T26 .075 T40 .09 T68 .067
T13 .097 T27 .037 T41 .045 T69 .075
T14 .119 T28 .045 T42 .06 T70 .082

When we compute results for the actual case where we only have
one threshold for all the transforms, two queries cause this threshold
to be high (thresholds of 160 and 136). For the threshold of 160, the
min NDCR is shown in Table 11. For the actual no FA case shown in
Table 11, the min NDCR for many transforms has doubled compared
to the optimal no FA case (Table 10).

If we ignore the two queries that cause the high thresholds of
160 (video only match) and 136 (audio only match of notes in wrong
place due to superimposed speech), then the next highest threshold
for false alarms is 58. For a threshold of 58, Table 12 gives the min
NDCR for each transform. Transforms with false alarms above this
threshold are marked with “xxx”. There are 11 transforms which
have false alarms above this threshold, resulting in bad min NDCR.
For the rest of the transforms, the min NDCR is close to the opti-
mal min NDCR for the no FA case (Table 10). For this reason, we
submitted two no FA submissions with thresholds of 160 and 60.

8.1. Results on 2011 queries

Based on our experience with TRECVID 2010 queries, we submit-
ted two audio+video submissions for no FA case. The submissions
were the same except for the thresholds of 60 and 160. The results
for individual transforms for actual no FA case are shown in table
13. The min NDCR entries in bold are for lowest min NDCR among
all sites. For the threshold of 60, we get lowest min NDCR for 22

Table 11. Minimal NDCR for audio+video combined results for
2010 queries for actual no FA case (threshold 160).

T min T min T min T min
NDCR NDCR NDCR NDCR

T1 .126 T15 .022 T29 .022 T50 .052
T2 .149 T16 .022 T30 .022 T51 .06
T3 .194 T17 .022 T31 .022 T52 .075
T4 .186 T18 .022 T32 .022 T53 .067
T5 .223 T19 .029 T33 .029 T54 .082
T6 .223 T20 .022 T34 .022 T55 .09
T7 .283 T21 .029 T35 .029 T56 .119
T8 .089 T22 .044 T36 .052 T64 .09
T9 .104 T23 .052 T37 .052 T65 .09

T10 .126 T24 .067 T38 .074 T66 .097
T11 .126 T25 .067 T39 .067 T67 .097
T12 .134 T26 .082 T40 .097 T68 .119
T13 .149 T27 .089 T41 .089 T69 .119
T14 .186 T28 .119 T42 .119 T70 .156

Table 12. Minimal NDCR for audio+video combined results for
2010 queries for actual no FA case with a threshold of 58.

T min T min T min T min
NDCR NDCR NDCR NDCR

T1 .059 T15 .022 T29 .022 T50 xxx
T2 .067 T16 .022 T30 .022 T51 xxx
T3 .104 T17 .022 T31 .022 T52 xxx
T4 .09 T18 .022 T32 .022 T53 xxx
T5 xxx T19 .022 T33 .022 T54 xxx
T6 .142 T20 .022 T34 .022 T55 xxx
T7 .164 T21 .022 T35 .022 T56 xxx
T8 .052 T22 .022 T36 .030 T64 .052
T9 .060 T23 .022 T37 .03 T65 .060

T10 .097 T24 .037 T38 .037 T66 .074
T11 .067 T25 .022 T39 .03 T67 .067
T12 xxx T26 xxx T40 xxx T68 .074
T13 .111 T27 .045 T41 .052 T69 .082
T14 .119 T28 .045 T42 .06 T70 .082

transforms. For the threshold of 160, we get the lowest min NDCR
for another three transforms. Overall, we get lowest min NDCR for
25 transforms. Note that, for 12 different transforms, we miss only
one query. The min NDCR of 107 for some transforms implies that
there was one query with score over the threshold of 60 that should
have been rejected. A min NDCR of 214 implies two queries with
a score above the threshold. Similarly, a min NDCR of 320 implies
three queries above the score of 60 that should have been rejected.
There are only two such cases. The reason for the high false scores
is that there is either part of audio or video that are duplicates of
the test, but it is a false alarm because both audio and video are not
duplicates. We cannot really eliminate all such entries, since elim-
inating all entries for which we do not find both audio and video
significantly increases the min NDCR. This is because it is difficult
to detect many audio and video entries that have gone through trans-
forms difficult to detect. The mean processing time per audio+video
query is around 2770 secs. The mean F1 is around 0.7.

Similarly, for the balanced case, we gave two submissions dif-



Table 13. Minimal NDCR for audio+video combined results for
2011 audio and video queries for actual no FA case with a threshold
of 60. The min NDCR in boldface are the best results across all sites.

T min T min T min T min
NDCR NDCR NDCR NDCR

T1 214 T15 .007 T29 .007 T50 214
T2 214 T16 .015 T30 .007 T51 .045
T3 214 T17 107 T31 .007 T52 .045
T4 214 T18 .007 T32 .007 T53 107
T5 214 T19 .007 T33 .007 T54 .045
T6 107 T20 .007 T34 .007 T55 .045
T7 107 T21 .007 T35 .007 T56 .052
T8 320 T22 107 T36 107 T64 214
T9 214 T23 .045 T37 .060 T65 214

T10 214 T24 .045 T38 .052 T66 214
T11 214 T25 .037 T39 .052 T67 214
T12 320 T26 .052 T40 .060 T68 107
T13 214 T27 .052 T41 .060 T69 107
T14 214 T28 .060 T42 .06 T70 107

fering in thresholds only: the two thresholds were 58 and 65. The
min NDCR for each transform for actual balanced case at the thresh-
old of 65 are shown in table 14. The min NDCR values in bold are
the lowest among all submissions. Note that 13 transforms have only
one missed query (min NDCR of 0.007).

Table 14. Minimal NDCR for audio+video combined results for
2011 audio and video queries for actual balanced case with a thresh-
old of 65. The min NDCR in boldface are the best results across all
sites.

T min T min T min T min
NDCR NDCR NDCR NDCR

T1 .415 T15 .007 T29 .007 T50 .273
T2 .423 T16 .015 T30 .007 T51 .045
T3 .430 T17 .007 T31 .007 T52 .045
T4 .430 T18 .007 T32 .007 T53 .045
T5 .452 T19 .007 T33 .007 T54 .045
T6 .338 T20 .007 T34 .007 T55 .045
T7 .361 T21 .007 T35 .007 T56 .052
T8 .447 T22 .152 T36 .166 T64 .288
T9 .340 T23 .045 T37 .060 T65 .288

T10 .355 T24 .045 T38 .052 T66 .288
T11 .348 T25 .037 T39 .052 T67 .296
T12 .477 T26 .052 T40 .060 T68 .204
T13 .363 T27 .052 T41 .060 T69 .196
T14 .378 T28 .060 T42 .06 T70 .204

9. CONCLUSIONS

We show that nearest-neighbor mapping of test frames to query
frames works as well for video copy detection as it did for audio
copy detection. We tried two different feature sets with this near-
est neighbor mapping. One feature set was similar to that used by
NTT [7] where we used 7 discrete features per frame per color. The
other feature set used 16 unquantized features per frame per color.
We show that the unquantized features gave significantly lower min

NDCR than the discrete features. For the 2009 TRECVID CBCD
data, the min NDCR varies between 0 and 0.097 depending on the
transform. These results are better than the min NDCR we achieved
on audio copy detection for the same data. For the 2010 TRECVID
CBCD data, the min NDCR varies between 0.03 and 0.7. The results
on 2010 data are worse because of many slide shows where the tem-
poral variability is zero for many consecutive frames. For the slide
shows, we need to come up with new static features and modified
search in order to detect them.

We enhanced the audio copy detection by using three different
feature parameters for copy detection: MFCC, equalized MFCC,
and Gaussianized MFCC. Combining the results from the three fea-
ture parameters significantly reduces the number of missed queries.
Combining the results from audio and video copy detection leads to
very low min NDCR for many transforms. For 2011 audio+video
queries, we obtained min NDCR of 0.007 for 12 transforms for the
actual no FA case (we missed only one query). For 25 different
transforms for the actual no FA case, we got the lowest min NDCR
among all the submissions.
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