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Abstract

Semantic Indexing Task (SIN)

Run No. Run ID Run Description infMAP (%)

1 F A IUPR-DFKI 1 Fisher Kernel + SVMs 2.86
2 F A IUPR-DFKI 2 Color Correlogram + SVMs 5.38
3 F A IUPR-DFKI 3 Fisher Kernel fused with Color Correlograms +

SVMs
5.0

4 F A IUPR-DFKI 4 Fisher Kernel + kNN 0.71

Content-based Copy Detection (CCD)

Run No. Run ID Run Description Opt.NDCR

1 *iupr-dfki.fsift F-SIFT+BoW+HE+EWGC 0.776
2 *iupr-dfki.fsift2 F-SIFT+BoW+HE+EWGC 0.923
3 SIFT SIFT+BoW+HE+EWGC 0.884
4 SIFT+PV SIFT+BoW+HE+EWGC+PV 0.501
5 F-SIFT+PV F-SIFT+BoW+HE+EWGC+PV 0.446

*: officially submitted run.

This paper describes the TRECVID 2011 participation of the IUPR-DFKI team in the semantic indexing
task (SIN) and content based copy detection task (CCD) task. For SIN, this years participation was
dominated by an significant increase of vocabulary concept size from 130 to 346 concepts. In particular
the system setup has been changed to last year’s participation [6] with respect to computational demands
employing less computational costly features for classification and no usage of external training sources
like YouTube. For CCD, this years participation is aimed at testing the flip invariant SIFT applied in
video-only CCD. At the same time, we investigated how well we could achieve by relying on one keypoint
feature alone.



1. Introduction

While the web-based video continues to grow
rapidly with respect to user communities and num-
bers of views [1], the demand for robust search and
retrieval tools increases: For example, YouTube
as the market leader still struggles to grant effi-
cient access to vast parts of their content. Corre-
spondingly, the majority (99%) of video views on
YouTube are generated by a few (30%) highly pop-
ular videos [2]. This lack of information describing
the content of videos is one of the key challenges of
today’s web based video platforms.

Another challenge of such platforms is the pro-
tection of content owership i.e. prevention of copy-
right infringement. Although tool as YouTube’s
Content ID1 exist, such systems are fare from being
perfect and require further development [3].

In this year’s TRECVID benchmark we partici-
pated in the Semantic Indexing task (SIN) and the
Content-based Copy Detection task (CCD). This
paper will first describe the system setup for SIN
and then continue with an outline of our system for
CCD.

2. Semantic Indexing

This section describes the semantic indexing
task, set up of our system and the resulting runs.
The goal of semantic indexing task is to predict
the presence of semantic concepts like locations, ob-
jects, or actions appearing in a dataset of unknown
videos [18]. One successful approach to provide
such indexing is concept detection [19]. This year
the size of the concept vocabulary was increased to
346 concepts2.

2.1. Datasets

In this year’s participation the Internet Archive
Creative Common (IACC.1) dataset from 2010
benchmark was used. The dataset is splitted into
training data and test data. For both datasets the
shot boundary reference information is provided for
temporal segmentation into shots - the main unit
of interest. The datasets are defined as follows:

1. Training: This dataset consists of last
year’s test (IACC.1.A) and training

1http://www.youtube.com/t/contentid
2http://www-nlpir.nist.gov/projects/tv2011/tv11.

sin.346.concepts.simple.txt

(IACC.1.tv10.training) datasets contain-
ing over 400h of video material. The 11.5k

videos vary in video length ranging from 10s to
3.5 minutes and segment into 266k shots. For
this dataset concept labels have been acquired
by manual inspection through TRECVID’s
collaborative annotation effort [5].

2. Testing:: A dataset (IACC.1.B) videos con-
taining 200h of video ranging in duration from
10s to 3.5 minutes define the 8k unknown test
videos with 137k shots, for which concept ap-
pearance should be predicted and submitted
for evaluation to NIST.

2.2. Approach

In this year’s TRECVID participation we per-
formed a major change in our feature extraction
setup. With the goal to speed up the entire process
we changed from a dense sampling of SIFT patches
to an interest point detection based sampling and
a post-processing to Fisher BoW features. As com-
pared to our last year’s participation and because of
its robust performance and its computationally less
expensive extraction, color correlograms have been
evaluated as additional visual features. For classifi-
cation the system depends on SVMs. However, we
also evaluated kNN classification in this year’s par-
ticipation. The system is describes in more detail
in following sections.

2.2.1 Keyframe Extraction

Regarding shot representation we extract
keyframes for each shot which serve as sam-
ples for further processing. First, the standard
shot boundary reference - as given from NIST -
was used for temporal segmentation of the videos.
Then an intra-shot diversity based approach was
applied for keyframe extraction [7]. For each shot,
a K-Means clustering is performed over MPEG7
Color Layout Descriptors [16] extracted from all
frames. The number of clusters is fitted using the
Bayesian Information Criterion [17]. For each clus-
ter the frame closest to the cluster center is chosen
as a keyframe providing 1...k keyframes per shot.
Sample keyframes for the concepts “cityscape” and
“mountain” can be seen in Figure 1.

2.2.2 Features

For each keyframe the following visual features are
extracted:



Figure 1. Sample keyframes for the concept “cityscape” (lef t) and “mountain” (right) in the
IACC.1 dataset.

• Fisher on BoW: Visual words are extracted
by first performing Harlap point detection with
SIFT features [15], this results in 260 features
per keyframe on average. Keypoint features
in one frame are aggregated by Fisher kernel
with a small visual vocabulary (16 words). The
equation of Fisher aggregation [13] is shown in
Eqn. 1.

V =

N∑

s=1

[xd
s − wd

i ], (1)

where N is the number of keypoints in a frame,
wi is the closest visual word to keypoint xd

s .
This results in 2048-dimensional feature. This
feature is further reduced to 128 dimensions by
PCA mapping. As a consequence, one frame is
finally represented by an 128-dimensional ag-
gregated BoW feature.

• Color Correlograms: To capture color in-
formation, color correlograms [11] have been
extracted. The descriptor forms a 600-dim.
vector and is normalized to 1 as in [10].

2.2.3 Statistical Model

For classification the following statistical models
have been applied:

• Support vector machines: SVMs were used
as a standard approach for concept detection,
forming the core of numerous concept detec-
tion systems [19]. We used the LIBSVM [8]
implementation with a χ2 kernel, which has
empirically been demonstrated to be a good
choice for histogram features [20]:

K(x, y) = e
−

d
χ2 (x,y)2

γ2 (2)

where dχ2(., .) is the χ2 distance. γ and the
SVM cost of misclassifications C were esti-
mated separately for each concept using a grid
search over the 3-fold cross-validated average
precision. One problem is that training sets
are imbalanced, i.e. the number of negative
samples outnumbers the number of positive
ones. Such setups cause problems for many
classifiers, including SVMs [4]. To overcome
this problem, the dominant class is subsam-
pled to obtain roughly balanced training sets.
For each run, SVMs were trained on the given
small-scale training sets with maximal 3000
positive and and 6000 negative training exam-
ples from the available data set.

In all cases, SVM scores were mapped to prob-
ability estimates using the LIBSVM standard
implementation.

• kNN Classification: Because of the redun-
dancy in the dataset we also employ kNN clas-
sification. In this light-weight method, we sim-
ply predict a sample based on its top-80 near-
est neighbors. A confidence score is assigned
to the sample by normalizing sum of all the
Cosine similarities this sample to the training
instances from one class.

2.2.4 Late Fusion

Finally, scores obtained from several keyframes are
fused:

• Having several keyframes for each shot, the
corresponding scores are simply averaged, pro-
viding a single score for each shot and feature.

• For fusing different features, we perform a
weighted sum fusion, whereas concept-specific



Figure 2. Quantitative results for our runs. The first three r uns evaluate different features with
SVM based classification whereas the third run uses kNN class ification.

weights are learned using a grid search max-
imizing average precision on the TRECVID
data set.

2.3. Results

We submitted 4 runs for the full submission in-
cluding all 346 concept detections. In particular,
our runs are described as follows:

1. F A IUPR-DFKI 1 In this run, we used
the SVM approach in combination with Fisher
BoW features.

2. F A IUPR-DFKI 2 As in F A DFKI-

MADM 1, the second run used SVMs but
now only color correlograms as features for
keyframe description are employed.

3. F D IUPR-DFKI 3 Here, we combine
Fisher on BoW and color correlograms
features used as in F A DFKI-MADM 1 and
F A DFKI-MADM 2 setup in a late fusion
approach.

4. F B IUPR-DFKI 4 In contrast to the previ-
ous runs, we perform concept detection based
on kNN classification using Fisher on BoW fea-
tures.

Quantitative results are displayed in Figure 2. It
can be seen that concept detection using color cor-

relograms (infMAP of 5.38%, for F A IUPR-DFKI 2)
outperforms pure Fisher BoW based concept detec-
tion (infMAP of 2.86% for F A DFKI-MADM 1) Re-
garding concept detection using multiple features,
the combined run (infMAP of 5.0% for F A DFKI-

MADM 3) is not reaching a performance as simi-
lar as one of the single feature runs. Finally, the
kNN based concept detection (infMAP of 0.7% for
F A DFKI-MADM 4) is not able to outperform SVM
based concept detection. Probably the amount of
samples being in the training set is not sufficient
for an accurate nearest neighbor classification.

3. Content-based Copy Detection

This section describes the content-based copy
detection task [14], our system set up and the re-
sulting runs.

3.1. Datasets

Our system is tested on TRECVID sound and
vision dataset 2010. The dataset consists of 11,525

web videos with a total duration of 400 hours.
There are 1,608 video-only queries which are ar-
tificially generated by eight different transforma-
tions ranging from camcording, picture-in-picture,
re-encoding, frame dropping to the mixture of dif-
ferent transformations including flip, blurring and



etc.
In our pre-processing step, dense keyframe sam-

pling is performed on both query and reference
videos with the same rate: one keyframe per 1.6

seconds. This results in an average of 46 keyframes
per query, and a total of 903,656 keyframes in
the reference dataset. Image local features are
extracted from the frames by Harris-Laplacian
keypoint detector with flip invariant SIFT (F-
SIFT) [21] descriptor3. On average, there are 309

keypoints per frame.

3.2. CCD Framework

In general, our detection framework is based on
BoW search which is composed of an online re-
trieval and an offline indexing part. For the of-
fline indexing part, keypoints extracted from each
sampled frame are represented by a 20K visual vo-
cabulary. Each keypoint is attached with a 32-bit
Hamming embedding [12] code, x, y location, char-
acteristic scale and the dominant orientation [15].

For the online retrieval, the sampled query
frames are similarly represented with BoW, and
searched against the inverted file (IF). To allevi-
ate the information loss due to vector quantiza-
tion, we impose both visual (Hamming Embedding
(HE) [12]) and geometric verification (EWGC [23])
on the visual word matches. Together with EWGC,
SR-PE is employed to perform reciprocal valida-
tion, which is elaborated in next section.

Additionally, we perform dominant curl verifica-
tion on visual word matches which is derived from
F-SIFT [21] . Visual word pair is accepted as a
valid match only when their signs of dominant curl
meet up. Besides filtering out false matches, this
scheme reduces the total number of matches fed
into geometric verification (EWGC and SR-PE),
which is the processing bottle-neck, this operation
also speeds up the overall detection process.

Finally we employ 2D Hough transform (HT) to
aggregate the scores from matched frame pairs and
localize the copy segments. The aggregated score
is further normalized by the identified duration on
the query side. This normalized value is treated as
confidence score in the final output. For each query,
top k ranked reference videos (K=1, 2 in our case)
are considered. Since we only conduct video-only
copy detection, for video+audio detection task, we
simply submit the same detection results for the
corresponding queries.

3Code available at: http://www.cs.cityu.edu.hk/ wzhao2/˜lip-
vireo.htm

(a) Heavy skew (b) Large scaling

Figure 3. Examples of copies with very
few true positive matches due to heavy
transformation.

3.3 Reciprocal Geometry Verification

In BoW based framework, given the valid visual
word matches returned by IF and E-WGC verifica-
tion, the similarity between a query Q and a refer-
ence image R is given by

Sim(Q, R) =

∑
h(q, p)

‖BoW (Q)‖2 · ‖BoW (R)‖2

, (3)

where h(q, p) is the weighted distance [12] between
Hamming signatures of q and p. The notation
BoW (Q) denotes the bag-of-words of Q. In order to
evaluate the similarity between query and reference
video, similarities of matched query and reference
keyframes are aggregated on Sim(Q, R) via Hough
transform [9, 23].

In practice, Eqn. 3 is not robust to heavy trans-
formation which often causes few matches between
two keyframes. Figure 4 shows an example where
there are only six matches being identified due
to large skew and scale resulting in low similarity
scores by Eqn. 3. To alleviate this problem, we re-
vise h(p, q) in Eqn. 3 such that the similarity is not
only dependent on the weighted Hamming distance
but also the confidence of matching between two
words. The h(p, q) is revised as

H(q, p) = (α − ∆) × logα ∆×h(q, p), (4)

where ∆ indicates the confidence of matching, and
α is an empirical parameter which is set to 0.9 in
our experiment. Eqn. 4 basically amplifies h(q, p)
when the matched pair holds high confidence score
(low ∆ in other words).



Table 1. Optimized Video-only performance of five “BALANCED ” runs
Transform Measures 1 2 3 4 5 6 8 10

*iupr-dfki.fsift
NDCR 1.099 0.984 0.456 0.945 0.505 0.664 0.755 0.797

TP 1 2 97 7 77 43 45 26
F1 0.898 0.856 0.596 0.626 0.565 0.551 0.524 0.501

*iupr-dfki.fsift2 NDCR 1.099 0.984 0.859 0.945 0.932 0.828 0.885 0.852
TP 1 2 59 7 36 22 42 19
F1 0.898 0.856 0.535 0.626 0.516 0.522 0.512 0.468

SIFT
NDCR 0.984 0.992 0.654 0.906 0.776 0.852 0.958 0.953

TP 2 1 58 12 56 19 19 6
F1 0.518 0.898 0.516 0.568 0.528 0.525 0.495 0.424

SIFT+PV
NDCR 0.552 0.992 0.318 0.628 0.417 0.398 0.622 0.508

TP 71 1 101 75 102 77 62 63
F1 0.632 0.898 0.550 0.613 0.544 0.601 0.558 0.536

F-SIFT+PV
NDCR 0.552 0.886 0.172 0.622 0.240 0.258 0.302 0.539

TP 71 83 106 62 111 95 103 59
F1 0.622 0.673 0.597 0.620 0.593 0.595 0.609 0.599

*: officially submitted run.

We estimate ∆ by reciprocal geometric verifica-
tion. On one hand, given two matched words p

and q from keyframes Q and R respectively, the
scale ŝ and rotation θ̂ between them can be approxi-
mated by SR-PE [22] approach. On the other hand,
EWGC [23] is able to recover these two parameters

(θ̃ and s̃) via dominant orientation and characteris-

tic scale. Notice that ŝ and θ̂ could be different from
the values θ̃ and s̃ estimated in EWGC [22] model.
However, in general the closer their values are, the
higher chance that the match between p and q is
correct. We thus define ∆ as the discrepancy value
between them as ∆ = max{|θ̂ − θ̃|, |ŝ − s̃|}. Refer-
ring back to equations Eqn. 3 and Eqn. 4, the sim-
ilarity between two keyframes is revised by weight-
ing the significance of matched words based on their
Hamming distance and matching confidence.

3.4. Results

We officially submitted two ‘BALANCED’ runs
for this year’s CCD task. Besides that, we carried
out three internal runs. The configurations of these
runs are described below.

• iupr-dfki.fsift F-SIFT is adopted as the de-
scriptor in this run. The detection follows the
framework presented in Section 3.2. Score is
aggregated on Eqn. 3 by Hough transform.
This score is further normalized by the de-
tected duration of one query. For each query,
the detected video ranked at top 1 is returned
(if there is any).

• iupr-dfki.fsift2 This run is similar to the first
run except that we choose top 2 ranked can-
didates for each query.

• SIFT This run adopts SIFT [15] as the de-
scriptor and follows the same processing flow
as “iupr-dfki.fsift” except that verifying visual
word matches via dominant curl is not applied.
This run acts as the comparison baseline for
our submissions.

• SIFT+PV This run is generated based on
“SIFT” run. The difference lies in two as-
pects. First, we didn’t normalize the aggre-
gated score by Hough transform. Second, for
each detected copy video pair, the matched
keyframe pair with highest score on Eqn. 3
among all matched keyframe pairs is selected
and undergone OOS+SR-PE [22] verification.
This verification helps to confirm whether the
most confident matched pair are really near-
duplicate. The video pairs fail in the verifica-
tion are removed from the resulting list. This
post validation (PV) only takes less than 0.25s

when it is performed between a query and one
reference video.

• F-SIFT+PV This run is built upon “iupr-
dfki.fsift”. However, unlike the first run, we
didn’t normalize the aggregated score by the
identified duration of one query. In addi-
tion, similar to “SIFT+PV”, OOS+SR-PE is
adopted for post verification.

Since all these runs are video-only detection,
their performances are under the inspection of
video transformations in the paper. Table 1 and
Table 2 illustrate the performances of these four
runs under thresholds which optimize NDCRs and
the thresholds suggested by us respectively. In
the evaluation, we already ignore 48 queries which



Table 2. Actual Video-only performance of five “BALANCED” ru ns
Transform Measures 1 2 3 4 5 6 8 10

*iupr-dfki.fsift
NDCR 8.327 4.673 3.381 2.274 3.214 2.000 5.100 4.902

TP 19 63 119 42 113 77 104 61
F1 0.437 0.632 0.588 0.545 0.589 0.567 0.581 0.545

*iupr-dfki.fsift2
NDCR 6.886 5.162 7.439 1.505 5.556 2.573 10.348 7.374

TP 12 55 119 31 114 72 102 59
F1 0.468 0.616 0.588 0.528 0.586 0.567 0.588 0.543

SIFT
NDCR 8.884 6.009 6.975 4.555 4.587 5.305 10.439 7.436

TP 16 56 110 37 115 64 63 51
F1 0.443 0.594 0.556 0.541 0.551 0.569 0.507 0.532

SIFT+PV
NDCR 0.612 1.055 0.703 0.802 0.719 0.602 1.086 0.508

TP 77 75 120 80 118 92 71 63
F1 0.622 0.641 0.556 0.609 0.559 0.623 0.543 0.536

F-SIFT+PV
NDCR 0.552 0.969 0.703 0.763 0.826 0.440 0.560 0.552

TP 71 86 120 85 118 99 111 71
F1 0.622 0.666 0.591 0.592 0.592 0.596 0.594 0.573

*: officially submitted run.

Table 3. Time costs for SIFT and F-SIFT runs (s)
1 2 3 4 5 6 8 10

SIFT 88.7 139.5 143.6 116.9 117.2 107.9 134.8 113.1
F-SIFT 65.1 86.4 90.5 86.1 79.5 80.4 85.6 79.8

have more than one duplicates in the reference set
as suggested by the organizer. We also ignore 7

queries which are visually duplicate to the same
reference video however they are not included in
the ground-truth4. The performances are evaluated
with NDCR, the number of true positives (TP) and
F1 on the localization accuracy.

As seen from Table 1 and Table 2, as to the runs
without post verificaton, “iupr-dfki.fsift” achieves
apparently better performances in transformation 8
in which flip transformation is included. Moreover,
this F-SIFT run outperform SIFT across most of
the transformation types. This is mainly due to
the use of dominant curl to filter out false visual
word matches. On the other hand, as indicated
in “iupr-dfki.fsift2” choosing top 2 detected videos
turns out to be an unsuccessful try, it simply brings
in more false positives.

According to NDCR measure, the system runs
exhibit high NDCR scores when they are mixed
with few false positives with high confidence value.
Typically, there are four types of false alarms in the
runs when post validation by OOS+SR-PE is not
involved. They are illustrated in Figures (a)-(d).
Among these types of false alarm, type c and d can
be easily removed after OOS+SR-PE verification.
As demonstrated in the runs with post verification
(“SIFT+PV” and “F-SIFT+PV”), NDCR scores

4Query ID: 262/532/667/700/893/981/1553, Reference
ID: 5757.

have been dropped to pretty low level. Although,
“SIFT+PV” and “F-SIFT+PV” are both benefit
from the post verification, “F-SIFT+PV” still out-
performs ‘SIFT+PV’ across most of the transfor-
mations as it is able to return more true-positives.

All our runs were carried out on a PC with 7.8G

memory and four processors with 2.8GHz for each.
We only open up one process throughout all our
simulations and no parallel computing is considered
in the code. During the simulation, it takes up
less than 4G memory to accommodate the whole
reference set. Since all our five runs are actually
built upon two individual runs, namely SIFT and
F-SIFT runs, Table 3 summarizes the processing
time for SIFT and F-SIFT runs. Due to the use of
dominant curl verification, F-SIFT run only takes
84.6s on average for one query which is close to the
average duration of the query (71.9s). If we only
consider the time cost at BoW retrieval stage, we
found F-SIFT run only takes 43.8s in average.

4. Discussion

For SIN - as compared to last year’s participa-
tion - we changed our feature extraction to be more
speed efficient by using low dimensional Fisher
BoW features instead of a high dimensional bag of
viswords constructed from pure SIFT descriptors.
The results indicate that the gained performance
speedup is bought with a less robust content de-



(a) Duplicate in back-
ground

(b) Duplicate Logo (c) Similar text pattern (d) Similar texture pat-
tern

Figure 4. Typical false alarms returned by the system. For fa lse alarm types a and b, they turn
out to be inevitable in our system since they are partially du plicate due to same backgrounds
or logos. In terms of false alarms from types c and d, they are m ainly due to imprecise visual
word matching introduced by quantization errors in BoW.

scription and lower performance. Further, the eval-
uation of the color correlogram based concept de-
tection indicate a reasonable balance between com-
putational performance and detection robustness.

In this year’s CCD task, we tested the flip in-
variant SIFT, it turns out to be a more favorable
descriptor than SIFT for video copy detection in
terms of both detection effectiveness and speed ef-
ficiency. We also demonstrated how well we can
really achieve when only a single image local fea-
ture is involved. We found that with the presented
framework, F-SIFT and OOS+SR-PE post valida-
tion, low NDCR score is still achievable with rel-
atively low computing resources comparing with
many other existing systems in the literature.
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