Quaero consortium at TRECVID 2011 Semantic Indexing Task

Bahjat Safadi, Nadia Derbas, Abdelkader Hamadi, Franck Thollard and Georges Quénot UJF-LIG

> *Hervé Jégou* INRIA-Texmex

Tobias Gehrig, Hazım Kemal Ekenel and Rainer Stifelhagen KIT

5 December 2011

Outline

- TRECVID semantic indexing task
- Global system architecture
- Descriptors with optimization
- Classification
- Hierarchical fusion
- Conceptual feedback
- Re-ranking
- Submitted runs
- Conclusion

TRECVID 2011 semantic Indexing task

- Find concepts in video shots
- Train classifiers on development data using the collaborative annotations
- Predict on test data and send ranked lists of 2000 shots to NIST for evaluation
- (Inferred) Mean Average Precision metrics on ground truth produced by NIST using pooling of submissions

The classical classification pipeline

The Quaero classification pipeline

System features

- Use of a large number of descriptors and variants
- Descriptor optimization
- Use of classifier variants
- Late fusion of descriptor and classifier variants
- Further hierarchical late fusion
- Conceptual feedback
- Temporal re-ranking

Descriptors and variants

- Color (histograms), texture (Gabor, quaternionic wavelets), points of interest (SIFT, color SIFT, STIP), percepts, audio (MFCC statistics)...
- Use of spatial (grid-based, pyramid) variants
- Use of other variants: number of bins in histograms, SIFT sampling, histogram fuzziness)
- 15 different types, 47 final variants
- Produced by Quaero partners or shared with external groups
- Gain by fusing variants: 5-15 % (relative on MAP)

Descriptor optimization

- Power transformation (similar to Douze 2010):
 - Many descriptors are histogram-based
 - χ^2 distance is more optimal but more complex to compute and Euclidian transformation not possible
 - $x_i >> y_i$ problem: large component dominates but $(x_i - y_i)^2 / (x_i + y_i) \sim (\sqrt{x_i} - \sqrt{y_i})^2$
 - Use $x_i \leftarrow \sqrt{x_i}$ or, more generally $x_i \leftarrow x_i^{\alpha}$
 - α optimized by cross-validation
 - Optimal value close to 0.5 but sometimes quite different
 - Gain from 10% to 100% (not frequent)
 - Gain even for non histogram-based descriptors
 - \rightarrow Euclidian distance becomes appropriate

Descriptor optimization

- PCA reduction
 - Possible only once Euclidian distance is appropriate
 - Significant reduction in the number of components
 - (Generally slight) simultaneous increase in performance
 - Number of kept component optimized by cross-validation on both criteria (good reduction with optimal performance)
 - Typical compression ratio 2:1 to 5:1, sometimes more
 - Gain from 0 to 15 %, typical 0 to 5%
 - Cumulated gain with power normalization

Use of multiple classifiers

- kNN
 - Linear combination of 0 and 1 according to the sample class and with a continuous and decreasing function of the distance to the nearest neighbors
 - Nearest neighbors computed only once whatever the number of target concepts → very efficient
- MSVM
 - Use of multiple SVMs to address the unbalanced data problem: late fusion of many classifiers, each with all the positive samples and with a different fraction of the negative samples (variant of Tahir and Kittler 2008).
 - Improves over regular SVM on highly imbalanced datasets
- MSVM is generally better than kNN but not always
- Late fusion of both almost always improves over the best one by 0 to 10%
- Tuning with kNN is relevant for MSVM

Hierarchical fusion

- Late fusion of descriptor and classifier variants: get the maximum from each descriptor type:
 - fuse spatial variants
 - then fuse other variants
 - finally fuse classification results from different classifiers
- Further hierarchical late fusion: fuse across different descriptors with similar types first:
 - all color together, all texture together ...
 - then all visual together, all audio together ...
 - finally everything together
- In all cases the exact form of the fusion function has not much effect
 - linear combination of scores is quasi-optimal
 - fusion is very prone to over-fitting

Conceptual feedback

- Idea: using the probability(-like) scores predicted on the 346 concepts for building a new descriptor
- Comparable to the percepts or attribute-base approaches
- Classifiers trained on this concept score descriptor have lower performance than the original ones but:
- Late fusion between the original scores and the scores computed from classification on these original scores yield a small (1-2%) improvement.
- Baseline and partial experiment, could be improved.

Temporal re-ranking

- Fact: shot within a video are semantically related, especially if they are close within the same video
- Idea: update shot scores according to neighbors' scores
- May be done globally (whole video) (Mérialdo 2009) or locally (window of a few shots) (Safadi 2010).
- Case of the full video:
 - Compute a global score for a whole video from the scores of all shots it contains (typically average or a variant)
 - Update the score of each shot using the global video shot (typically a linear combination or a variant)
 - Some parameters are tuned on a development set
- Gain from 5 to 15%
- Same effect if done lately, early or both, lately is simpler.

Submitted runs

- F_A_Quaero4_4: 0.1487
 - MAP weighted combination of all available descriptor/classifier combinations including the concept score feedback descriptor
- F_A_Quaero3_3: 0.1497
 - Flat and uniform combination of available descriptor/classifier combinations excluding the concept score feedback descriptor
- F_A_Quaero2_2: 0.1509 (+0.8%)
 - Optimized hierarchical combination of all available descriptor/classifier combinations excluding the concept score feedback descriptor
- F_A_Quaero1_1: 0.1528 (+1.3%)
 - Optimized hierarchical combination of all available descriptor/classifier combinations including the concept score feedback descriptor

Submitted runs

Conclusion

- Use of many descriptors, variants and classifiers
- Optimization of the descriptors
- Hierarchical fusion
- Conceptual feedback and temporal re-ranking
- Compute-intensive approach (no GPU optimization but use of the GRID'5000 facility)
- Many steps all bringing a modest improvement leads to a significantly improved global performance
- Complementary with approaches focusing on the best possible descriptor and the best possible machine learning?
- Multiple key frame was not used while a significant further improve can be expected (+12 to +15% reported by MediaMill)
- Audio was used (small contribution) but not ASR
- Improvements still possible