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Outline 

• TRECVID semantic indexing task 
• Global system architecture 
• Descriptors with optimization 
• Classification 
• Hierarchical fusion 
• Conceptual feedback 
• Re-ranking 
• Submitted runs 
• Conclusion 
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TRECVID 2011 semantic Indexing task 

• Find concepts in video shots 
• Train classifiers on development data using 

the collaborative annotations 
• Predict on test data and send ranked lists of 

2000 shots to NIST for evaluation 
• (Inferred) Mean Average Precision metrics on 

ground truth produced by NIST using pooling 
of submissions 
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The classical classification pipeline 
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The Quaero classification pipeline 
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 System features 

• Use of a large number of descriptors and variants 
• Descriptor optimization 
• Use of classifier variants 
• Late fusion of descriptor and classifier variants 
• Further hierarchical late fusion 
• Conceptual feedback 
• Temporal re-ranking 
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 Descriptors and variants 

• Color (histograms), texture (Gabor, quaternionic 
wavelets), points of interest (SIFT, color SIFT, 
STIP), percepts, audio (MFCC statistics)... 

• Use of spatial (grid-based, pyramid) variants 
• Use of other variants: number of bins in histograms, 

SIFT sampling, histogram fuzziness) 
• 15 different types, 47 final variants 
• Produced by Quaero partners or shared with 

external groups 
 

• Gain by fusing variants: 5-15 % (relative on MAP) 
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 Descriptor optimization 

• Power transformation (similar to Douze 2010): 
• Many descriptors are histogram-based 
• χ2 distance is more optimal but more complex to 

compute and Euclidian transformation not possible 
•               problem: large component dominates but 

 
 

• Use                  or, more generally  
• α  optimized by cross-validation 
• Optimal value close to 0.5 but sometimes quite different 
• Gain from 10% to 100% (not frequent) 
• Gain even for non histogram-based descriptors 
• →  Euclidian distance becomes appropriate  

( ) ( ) ( )22 ~ iiiiii yxyxyx −+−

ii yx >>

ii xx ← α
ii xx ←
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 Descriptor optimization 

• PCA reduction 
• Possible only once Euclidian distance is appropriate 
• Significant reduction in the number of components 
• (Generally slight) simultaneous increase in performance 
• Number of kept component optimized by cross-validation 

on both criteria (good reduction with optimal performance) 
• Typical compression ratio 2:1 to 5:1, sometimes more 
• Gain from 0 to 15 %, typical 0 to 5% 
• Cumulated gain with power normalization 
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 Use of multiple classifiers 
• kNN 

• Linear combination of 0 and 1 according to the sample class 
and with a continuous and decreasing function of the distance 
to the nearest neighbors 

• Nearest neighbors computed only once whatever the number 
of target concepts → very efficient 

• MSVM 
• Use of multiple SVMs to address the unbalanced data 

problem: late fusion of many classifiers, each with all the 
positive samples and with a different fraction of the negative 
samples (variant of Tahir and Kittler 2008). 

• Improves over regular SVM on highly imbalanced datasets 

• MSVM is generally better than kNN but not always 
• Late fusion of both almost always improves over the 

best one by 0 to 10% 
• Tuning with kNN is relevant for MSVM 
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 Hierarchical fusion 
• Late fusion of descriptor and classifier variants:  get the 

maximum from each descriptor type: 
• fuse spatial variants 
• then fuse other variants 
• finally fuse classification results from different classifiers 

• Further hierarchical late fusion: fuse across different 
descriptors with similar types first: 

• all color together, all texture together ... 
• then all visual together, all audio together ... 
• finally everything together 

• In all cases the exact form of the fusion function has not 
much effect 

• linear combination of scores is quasi-optimal 
• fusion is very prone to over-fitting 
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• Idea: using the probability(-like) scores predicted on the 
346 concepts for building a new descriptor 

• Comparable to the percepts or attribute-base 
approaches 

• Classifiers trained on this concept score descriptor have 
lower performance than the original ones but: 

• Late fusion between the original scores and the scores 
computed from classification on these original scores 
yield a small (1-2%) improvement. 

• Baseline and partial experiment, could be improved. 

Conceptual feedback 
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• Fact: shot within a video are semantically related, 
especially if they are close within the same video 

• Idea: update shot scores according to neighbors’ scores 
• May be done globally (whole video) (Mérialdo 2009) or 

locally (window of a few shots) (Safadi 2010). 
• Case of the full video: 

• Compute a global score for a whole video from the scores of all 
shots it contains (typically average or a variant) 

• Update the score of each shot using the global video shot 
(typically a linear combination or a variant) 

• Some parameters are tuned on a development set 

• Gain from 5 to 15% 
• Same effect if done lately, early or both, lately is simpler. 

 

Temporal re-ranking 
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• F_A_Quaero4_4: 0.1487 
• MAP weighted combination of all available descriptor/classifier 

combinations including the concept score feedback descriptor 

• F_A_Quaero3_3: 0.1497 
• Flat and uniform combination of available descriptor/classifier 

combinations excluding the concept score feedback descriptor 

• F_A_Quaero2_2: 0.1509 (+0.8%) 
• Optimized hierarchical combination of all available 

descriptor/classifier combinations excluding the concept score 
feedback descriptor 

• F_A_Quaero1_1: 0.1528 (+1.3%) 
• Optimized hierarchical combination of all available 

descriptor/classifier combinations including the concept score 
feedback descriptor 

Submitted runs 
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Submitted runs 
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• Use of many descriptors, variants and classifiers 
• Optimization of the descriptors 
• Hierarchical fusion 
• Conceptual feedback and temporal re-ranking 

• Compute-intensive approach (no GPU optimization but use of 
the GRID’5000 facility) 

• Many steps all bringing a modest improvement leads to a 
significantly improved global performance 

• Complementary with approaches focusing on the best 
possible descriptor and the best possible machine learning? 

• Multiple key frame was not used while a significant further 
improve can be expected (+12 to +15% reported by 
MediaMill) 

• Audio was used (small contribution) but not ASR 
• Improvements still possible 

Conclusion 
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