Fusion

Results

LEAR @ TrecVid MED 2012

Dan Oneață¹, Matthijs Douze¹, Jérôme Revaud¹, Jochen Schwenninger², Heng Wang¹, Danila Potapov¹, Zaïd Harchaoui¹, Jakob Verbeek¹, Cordelia Schmid¹

> ¹LEAR team, INRIA Grenoble, France ²Fraunhofer Sankt Augustin, Germany

Outline

1 Low-level features: appearance, motion, audio

- 2 Feature encoding: Fisher vectors
- 3 High-level features: text
- 4 Fusion strategies

Fusion

Outline

1) Low-level features: appearance, motion, audio

- 2 Feature encoding: Fisher vectors
- 3 High-level features: text
- 4 Fusion strategies
- 5 Experiments and results

Appearance and audio features

Scale-invariant feature transform (SIFT, Lowe 2004):

- 21×21 patches at 4 pixel steps on 5 scales
- Every 60-th frame.

Appearance and audio features

Scale-invariant feature transform (SIFT, Lowe 2004):

- 21×21 patches at 4 pixel steps on 5 scales
- Every 60-th frame.

Mel-frequency cepstral coefficients (MFCC, Rabiner and Schafer 2007).

- $\bullet\,$ Window of 25 ms and a step-size of 10 ms
- 39 coefficients: 12 MFCC and energy of the signal, first and second derivative
- Optionally: Speech/non-speech separation.

Motion features

Dense trajectories (Wang et al., 2011)

- Strong performance on many action recognition datasets: Hollywood2, Youtube, UCF Sports.
- Idea: MBH descriptors computed across short densely sampled trajectories.

Dense sampling in each spatial scale

Motion features

Dense trajectories (Wang et al., 2011)

- Strong performance on many action recognition datasets: Hollywood2, Youtube, UCF Sports.
- Idea: MBH descriptors computed across short densely sampled trajectories.

Motion features

Dense trajectories (Wang et al., 2011)

- Strong performance on many action recognition datasets: Hollywood2, Youtube, UCF Sports.
- Idea: MBH descriptors computed across short densely sampled trajectories.

Motion features

Dense trajectories (Wang et al., 2011)

- Strong performance on many action recognition datasets: Hollywood2, Youtube, UCF Sports.
- Idea: MBH descriptors computed across short densely sampled trajectories.

High-level features

Fusion

Results

References

Motion features

Video rescaling for dense trajectories

• Computationally expensive: cost scales linearly with the size of the video (time × resolution)

Video rescaling for dense trajectories

• Computationally expensive: cost scales linearly with the size of the video (time × resolution)

Video rescaling for dense trajectories

• Computationally expensive: cost scales linearly with the size of the video (time × resolution)

Results

References

Video rescaling for dense trajectories

- Computationally expensive: cost scales linearly with the size of the video (time × resolution)
- Speed-ups:
 - Rescale videos: width at most 200 px.

Video rescaling for dense trajectories

- Computationally expensive: cost scales linearly with the size of the video (time × resolution)
- Speed-ups:
 - Rescale videos: width at most 200 px.
 - Skip every second frame

Video rescaling for dense trajectories

- Computationally expensive: cost scales linearly with the size of the video (time × resolution)
- Speed-ups:
 - Rescale videos: width at most 200 px.
 - Skip every second frame
 - Process descriptors on-the-fly.

Fusion

Results

Outline

Low-level features: appearance, motion, audio

2 Feature encoding: Fisher vectors

3 High-level features: text

• Top feature encoding technique for:

- object recognition (Chatfield et al., 2011)
- action recognition (Wang et al., 2012).

• Top feature encoding technique for:

- object recognition (Chatfield et al., 2011)
- action recognition (Wang et al., 2012).
- Fisher vectors (FV) for GMM:

• Top feature encoding technique for:

- object recognition (Chatfield et al., 2011)
- action recognition (Wang et al., 2012).

• Fisher vectors (FV) for GMM:

- soft bag-of-words: $\sum_{x} p(k|\mathbf{x})$
- first moment: $\sum_{x} p(k|\mathbf{x})(\mathbf{x} \mu_k)$
- second moment: $\sum_{x} p(k|\mathbf{x})(\mathbf{x}-\mu_k)^2$.

Results

• Top feature encoding technique for:

- object recognition (Chatfield et al., 2011)
- action recognition (Wang et al., 2012).

• Fisher vectors (FV) for GMM:

- soft bag-of-words: $\sum_{x} p(k|\mathbf{x})$
- first moment: $\sum_{\underline{x}} p(k|\mathbf{x})(\mathbf{x}-\mu_k)$
- second moment: $\sum_{x} p(k|\mathbf{x})(\mathbf{x}-\mu_k)^2$.
- FV size: K + 2KD
 - K: number of Gaussians
 - ${\circ}~D{:}$ descriptor dimension.

• Top feature encoding technique for:

- object recognition (Chatfield et al., 2011)
- action recognition (Wang et al., 2012).

• Fisher vectors (FV) for GMM:

- soft bag-of-words: $\sum_{x} p(k|\mathbf{x})$
- first moment: $\sum_{\underline{x}} p(k|\mathbf{x})(\mathbf{x}-\mu_k)$
- second moment: $\sum_{x} p(k|\mathbf{x})(\mathbf{x}-\mu_k)^2$.
- FV size: K + 2KD
 - ${\scriptstyle \circ \ } K{\rm :}$ number of Gaussians
 - D: descriptor dimension.
- Normalization:
 - zero mean, unit variance
 - signed square-rooting
 - ℓ_2 normalization.

Results

Outline

1) Low-level features: appearance, motion, audio

- 2 Feature encoding: Fisher vectors
- 3 High-level features: text
- 4 Fusion strategies
- 5 Experiments and results

References

High-level features. Optical character recognition

Feature extraction:

• Maximally stable extremal regions (MSER; Matas et al. 2004)

References

High-level features. Optical character recognition

Feature extraction:

• Maximally stable extremal regions (MSER; Matas et al. 2004)

High-level features. Optical character recognition

Feature extraction:

- Maximally stable extremal regions (MSER; Matas et al. 2004)
- Filtering based on boundary gradients and aspect ratio.

Butter: 150 grams or 3/5 of a 250g block

High-level features. Optical character recognition

Feature extraction:

- Maximally stable extremal regions (MSER; Matas et al. 2004)
- Filtering based on boundary gradients and aspect ratio.
- HOG descriptor (Dalal and Triggs, 2005).

Butter: 150 grams or 3/5 of a 250g block

High-level features. Optical character recognition

Feature extraction:

- Maximally stable extremal regions (MSER; Matas et al. 2004)
- Filtering based on boundary gradients and aspect ratio.
- HOG descriptor (Dalal and Triggs, 2005).

Recognition:

• RBF-kernel SVM trained on Windows fonts.

Butter: 150 grams or 3/5 of a 250g block

References

High-level features. Optical character recognition

Feature extraction:

- Maximally stable extremal regions (MSER; Matas et al. 2004)
- Filtering based on boundary gradients and aspect ratio.
- HOG descriptor (Dalal and Triggs, 2005).

Recognition:

- RBF-kernel SVM trained on Windows fonts.
- *n*-gram model over characters.

High-level features. Optical character recognition

Feature extraction:

- Maximally stable extremal regions (MSER; Matas et al. 2004)
- Filtering based on boundary gradients and aspect ratio.
- HOG descriptor (Dalal and Triggs, 2005).

Recognition:

- RBF-kernel SVM trained on Windows fonts.
- *n*-gram model over characters.

Video representation:

• Bag-of-words.

Outline

1) Low-level features: appearance, motion, audio

- 2 Feature encoding: Fisher vectors
- 3 High-level features: text

Fusion

- Early fusion: concatenate feature vectors.
 - Sum of kernels.

- Early fusion: concatenate feature vectors.
 - Sum of kernels.
- Late fusion: linear combination of scores.
 - Learn classifiers for each channel
 - Learn weights using grid-search or logistic regression.

Outline

1) Low-level features: appearance, motion, audio

- 2 Feature encoding: Fisher vectors
- 3 High-level features: text
- 4 Fusion strategies

References

MinNDC error on the TrecVid '11 data

Channel	birthday party	changing vehicle tire	flash mob gathering	unstuck vehicle	grooming an animal	making a sandwich	parade	parkour	repairing an appliance	sewing project	Average
Best 2011	0.45	0.47	0.28	0.38	0.62	0.57	0.45	0.31	0.38	0.57	0.45

References

MinNDC error on the TrecVid '11 data

Channel	birthday party	changing vehicle tire	flash mob gathering	unstuck vehicle	grooming an animal	making a sandwich	parade	parkour	repairing an appliance	sewing project	Average
Best 2011	0.45	0.47	0.28	0.38	0.62	0.57	0.45	0.31	0.38	0.57	0.45
MBH	0.77	0.79	0.34	0.59	0.75	0.77	0.52	0.25	0.53	0.65	0.60

References

MinNDC error on the TrecVid '11 data

Channel	birthday party	changing vehicle tire	flash mob gathering	unstuck vehicle	grooming an animal	making a sandwich	parade	parkour	repairing an appliance	sewing project	Average
Best 2011	0.45	0.47	0.28	0.38	0.62	0.57	0.45	0.31	0.38	0.57	0.45
MBH SIFT	$\begin{array}{c} 0.77 \\ \underline{0.71} \end{array}$	$\begin{array}{c} 0.79 \\ \underline{0.63} \end{array}$	$\tfrac{0.34}{0.40}$	$\begin{array}{c} 0.59 \\ \underline{0.45} \end{array}$	$0.75 \\ 0.75$	$\begin{array}{c} 0.77 \\ \underline{0.69} \end{array}$	$\tfrac{0.52}{0.71}$	$\frac{0.25}{0.57}$	$\tfrac{0.53}{0.61}$	$\tfrac{0.65}{0.77}$	$\frac{0.60}{0.63}$

References

MinNDC error on the TrecVid '11 data

Channel	birthday party	changing vehicle tire	flash mob gathering	unstuck vehicle	grooming an animal	making a sandwich	parade	parkour	repairing an appliance	sewing project	Average
Best 2011	0.45	0.47	0.28	0.38	0.62	0.57	0.45	0.31	0.38	0.57	0.45
MBH SIFT MFCC	$0.77 \\ 0.71 \\ 0.65$	$0.79 \\ 0.63 \\ 0.93$		$0.59 \\ 0.45 \\ 0.77$	$0.75 \\ 0.75 \\ 0.96$	$\begin{array}{c} 0.77 \\ \underline{0.69} \\ 0.94 \end{array}$		$ \begin{array}{r} 0.25 \\ 0.57 \\ 0.94 \end{array} $	$\frac{0.53}{0.61}$ 0.55		

References

MinNDC error on the TrecVid '11 data

Channel	birthday party	changing vehicle tire	flash mob gathering	unstuck vehicle	grooming an animal	making a sandwich	parade	parkour	repairing an appliance	sewing project	Average
Best 2011	0.45	0.47	0.28	0.38	0.62	0.57	0.45	0.31	0.38	0.57	0.45
MBH SIFT MFCC OCR	$0.77 \\ 0.71 \\ \underline{0.65} \\ 0.95$	$\begin{array}{c} 0.79 \\ \underline{0.63} \\ 0.93 \\ 0.94 \end{array}$	$\begin{array}{c} \underline{0.34} \\ 0.40 \\ 0.70 \\ 0.91 \end{array}$	$\begin{array}{c} 0.59 \\ \underline{0.45} \\ 0.77 \\ 0.99 \end{array}$	$\begin{array}{c} 0.75 \\ \underline{0.75} \\ 0.96 \\ 0.93 \end{array}$	$\begin{array}{c} 0.77 \\ \underline{0.69} \\ 0.94 \\ 0.85 \end{array}$	$\begin{array}{c} \underline{0.52} \\ 0.71 \\ 0.80 \\ 0.95 \end{array}$	$ \begin{array}{r} 0.25 \\ 0.57 \\ 0.94 \\ 1.00 \end{array} $	$\begin{array}{c} \underline{0.53} \\ 0.61 \\ 0.55 \\ 0.68 \end{array}$	$\frac{0.65}{0.77} \\ 0.82 \\ 0.88$	$ \begin{array}{r} \underline{0.60} \\ 0.63 \\ 0.81 \\ 0.91 \end{array} $

References

MinNDC error on the TrecVid '11 data

Channel	birthday party	changing vehicle tire	flash mob gathering	unstuck vehicle	grooming an animal	making a sandwich	parade	parkour	repairing an appliance	sewing project	Average
Best 2011	0.45	0.47	0.28	0.38	0.62	0.57	0.45	0.31	0.38	0.57	0.45
MBH SIFT MFCC OCR	$\begin{array}{c} 0.77 \\ 0.71 \\ 0.65 \\ 0.95 \end{array}$	$\begin{array}{c} 0.79 \\ 0.63 \\ 0.93 \\ 0.94 \end{array}$	$\begin{array}{c} 0.34 \\ 0.40 \\ 0.70 \\ 0.91 \end{array}$	$\begin{array}{c} 0.59 \\ 0.45 \\ 0.77 \\ 0.99 \end{array}$	$\begin{array}{c} 0.75 \\ 0.75 \\ 0.96 \\ 0.93 \end{array}$	$\begin{array}{c} 0.77 \\ 0.69 \\ 0.94 \\ 0.85 \end{array}$	$\begin{array}{c} 0.52 \\ 0.71 \\ 0.80 \\ 0.95 \end{array}$	$\begin{array}{c} 0.25 \\ 0.57 \\ 0.94 \\ 1.00 \end{array}$	$\begin{array}{c} 0.53 \\ 0.61 \\ 0.55 \\ 0.68 \end{array}$	$0.65 \\ 0.77 \\ 0.82 \\ 0.88$	$0.60 \\ 0.63 \\ 0.81 \\ 0.91$
MBH+SIFT	0.62	0.54	<u>0.26</u>	<u>0.37</u>	0.67	0.62	<u>0.44</u>	0.22	0.46	<u>0.60</u>	0.48

References

MinNDC error on the TrecVid '11 data

Channel	birthday party	changing vehicle tire	flash mob gathering	unstuck vehicle	grooming an animal	making a sandwich	parade	parkour	repairing an appliance	sewing project	Average
Best 2011	0.45	0.47	0.28	0.38	0.62	0.57	0.45	0.31	0.38	0.57	0.45
MBH SIFT MFCC OCR	$\begin{array}{c} 0.77 \\ 0.71 \\ 0.65 \\ 0.95 \end{array}$	$\begin{array}{c} 0.79 \\ 0.63 \\ 0.93 \\ 0.94 \end{array}$	$\begin{array}{c} 0.34 \\ 0.40 \\ 0.70 \\ 0.91 \end{array}$	$\begin{array}{c} 0.59 \\ 0.45 \\ 0.77 \\ 0.99 \end{array}$	$\begin{array}{c} 0.75 \\ 0.75 \\ 0.96 \\ 0.93 \end{array}$	$\begin{array}{c} 0.77 \\ 0.69 \\ 0.94 \\ 0.85 \end{array}$	$\begin{array}{c} 0.52 \\ 0.71 \\ 0.80 \\ 0.95 \end{array}$	$\begin{array}{c} 0.25 \\ 0.57 \\ 0.94 \\ 1.00 \end{array}$	$\begin{array}{c} 0.53 \\ 0.61 \\ 0.55 \\ 0.68 \end{array}$	$0.65 \\ 0.77 \\ 0.82 \\ 0.88$	$0.60 \\ 0.63 \\ 0.81 \\ 0.91$
$\substack{\text{MBH+SIFT}\\\cdots+\text{MFCC}}$	$\begin{array}{c} 0.62 \\ \underline{0.49} \end{array}$	$\begin{array}{c} 0.54 \\ \underline{0.48} \end{array}$	$\tfrac{0.26}{0.26}$	$\frac{0.37}{0.38}$	0.67 <u>0.59</u>	$\tfrac{0.62}{0.65}$	0.44 <u>0.41</u>	0.22 <u>0.21</u>	0.46 <u>0.35</u>	$0.60 \\ 0.52$	0.48 0.43

References

MinNDC error on the TrecVid '11 data

Channel	birthday party	changing vehicle tire	flash mob gathering	unstuck vehicle	grooming an animal	making a sandwich	parade	parkour	repairing an appliance	sewing project	Average
Best 2011	0.45	0.47	0.28	0.38	0.62	0.57	0.45	0.31	0.38	0.57	0.45
MBH SIFT MFCC OCR	$0.77 \\ 0.71 \\ 0.65 \\ 0.95$	$0.79 \\ 0.63 \\ 0.93 \\ 0.94$	$0.34 \\ 0.40 \\ 0.70 \\ 0.91$	$0.59 \\ 0.45 \\ 0.77 \\ 0.99$	$\begin{array}{c} 0.75 \\ 0.75 \\ 0.96 \\ 0.93 \end{array}$	$0.77 \\ 0.69 \\ 0.94 \\ 0.85$	$0.52 \\ 0.71 \\ 0.80 \\ 0.95$	$0.25 \\ 0.57 \\ 0.94 \\ 1.00$	$\begin{array}{c} 0.53 \\ 0.61 \\ 0.55 \\ 0.68 \end{array}$	$0.65 \\ 0.77 \\ 0.82 \\ 0.88$	$0.60 \\ 0.63 \\ 0.81 \\ 0.91$
$\begin{array}{c} \mathrm{MBH} + \mathrm{SIFT} \\ \cdots + \mathrm{MFCC} \\ \cdots + \mathrm{OCR} \end{array}$	$0.62 \\ 0.49 \\ 0.46$	$0.54 \\ 0.48 \\ 0.45$	$\frac{0.26}{0.26}$ $\frac{0.26}{0.26}$	0.37 0.38 0.38	$0.67 \\ 0.59 \\ 0.54$	$\frac{0.62}{0.65}$ $\frac{0.55}{0.55}$	0.44 0.41 <u>0.39</u>	0.22 <u>0.21</u> 0.23	0.46 0.35 <u>0.34</u>	0.60 0.52 <u>0.51</u>	$0.48 \\ 0.43 \\ 0.41$

Our submissions

Actual NDC										
Run	Features	Late fusion	$\operatorname{PreSpec}$	AdHoc						
c-LFdnsmall c-LFjrlrsmall p-LFdnbig c-LFjrlrbig	small small big big	grid search logistic regression grid search logistic regression	0.544 0.536 0.516 0.515	0.711 0.749 0.559 0.536						

Our submissions

Actual NDC											
Run	Features	Late fusion	$\operatorname{PreSpec}$	AdHoc							
c-LFdnsmall c-LFjrlrsmall p-LFdnbig c-LFjrlrbig	small small big big	grid search logistic regression grid search logistic regression	0.544 0.536 0.516 0.515	0.711 0.749 0.559 0.536							

Modality	Descriptor	sn	nall	big		
		dim	$\times~\mathrm{RT}$	\dim	\times RT	
Motion	MBH	33k	2.4	131k	3.0	
Image	SIFT	16k	2.5	66k	6.6	
Audio	MFCC	40k	0.2	81k	0.2	
Text	OCR	200k	1.4	200k	1.4	
Total		289k	6.5	478k	11.2	

RT: single CPU computation \times real time.

Our submissions

Actual NDC										
Run	Features	Late fusion	$\operatorname{PreSpec}$	AdHoc						
c-LFdnsmall c-LFjrlrsmall p-LFdnbig c-LFjrlrbig	small small big big	grid search logistic regression grid search logistic regression	0.544 0.536 0.516 0.515	0.711 0.749 0.559 0.536						

Modality	Descriptor	small		big	
		\dim	$\times~\mathrm{RT}$	\dim	$\times~\mathrm{RT}$
Motion	MBH	33k	2.4	131k	3.0
Image	SIFT	16k	2.5	66k	6.6
Audio	MFCC	40k	0.2	81k	0.2
Text	OCR	200k	1.4	200k	1.4
Total		289k	6.5	478k	11.2

RT: single CPU computation \times real time.

Computation on MED test set: 4,000 h video $\times 11.2/400$ CPUs ≈ 4 days.

Fusion

Conclusions

Excellent results while being compact:

- Small set of low-level features: MBH, SIFT, MFCC
- High-dimensional FV encoding
- One type of high level features: OCR
- Linear classifiers + late fusion.

Code for MBH, SIFT and Fisher vectors available at http://lear.inrialpes.fr/software/

- Chatfield, K., Lempitsky, V., Vedaldi, A., and Zisserman, A. (2011). The devil is in the details: an evaluation of recent feature encoding methods. In *Proceedings of the British Machine Vision Conference* (*BMVC*).
- Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 886–893. IEEE.
- Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. *International journal of computer vision*, 60(2):91–110.
- Matas, J., Chum, O., Urban, M., and Pajdla, T. (2004). Robust wide-baseline stereo from maximally stable extremal regions. *Image* and Vision Computing, 22(10):761–767.
- Natarajan, P., Wu, S., Vitaladevuni, S., Zhuang, X., Tsakalidis, S., Park, U., and Prasad, R. (2012). Multimodal feature fusion for robust event detection in web videos. In *CVPR*.
- Perronnin, F., Sánchez, J., and Mensink, T. (2010). Improving the Fisher Kernel for Large-Scale Image Classification. In Daniilidis, K., Maragos, P., and Paragios, N., editors, *European Conference on Computer Vision (ECCV '10)*, volume 6314 of *Lecture Notes in*

Computer Science (LNCS), pages 143–156, Heraklion, Greece. Springer-Verlag.

- Rabiner, L. R. and Schafer, R. W. (2007). Introduction to digital speech processing. *Found. Trends Signal Process.*
- Wang, H., Kläser, A., Schmid, C., and Cheng-Lin, L. (2011). Action recognition by dense trajectories. In *IEEE Conference on Computer* Vision & Pattern Recognition, pages 3169–3176, Colorado Springs, United States.
- Wang, X., Wang, L., and Qiao, Y. (2012). A comparative study of encoding, pooling and normalization methods for action recognition. ACCV '12.