CMU-IBM-NUS@TRECVID 2012: Surveillance Event Detection(SED)

Yang Cai †*, Qiang Chen i+*, Lisa Brown i, Ankur Datta i, Quanfu Fan i, Rogerio Feris i, Shuicheng Yan i, Alex Hauptmann †, Sharath Pankanti i

† Carnegie Mellon University

† IBM Research

† National University of Singapore

*Equal contributions by co-authors.

Outline

- Retrospective Event Detection
 - System Overview
 - Fisher Vector Coding for Event Representation
 - Performance Evaluation
- Interactive Event Detection
 - Detection Results Visualization
 - Event-specific Results Visualization
 - User Feedback Utilization
 - Temporal Locality Based Search
 - Performance Evaluation

Outline

- Retrospective Event Detection
 - System Overview
 - Fisher Vector Coding for Event Representation
 - Performance Evaluation
- Interactive Event Detection
 - Detection Results Visualization
 - Event-specific Results Visualization
 - User Feedback Utilization
 - Temporal Locality Based Search
 - Performance Evaluation

System Overview

System Overview

Event Representation

Fisher Vector (FV) Coding [1]:

- A GMM is learnt to model each MoSIFT features.
- For each feature point in a detection window, the gradients with respective to mean and standard deviation of the GMM are calculated.
- FV is the concatenation of the two gradients averaged over all features in a detection window.

Fisher Vector (FV) vs. Bag-of-Word(BoW) [2]

- BoW is only about counting local descriptors assigned to each visual word while FV includes higher order statistics.
- FV is faster to compute than BoW for a given feature dimension.
- [1] F. Perronnin and T. Mensink. Improving the fisher kernel for large-scale image classification. In *ECCV*, 2010.
- [2] F. Perronnin and H. Jégou. Tutoria oriblarge Scale Visual Recognition, in CVPR, 2012.

Primary	CMU-IBN	M_FV2012	Others' E	Best 2012	CMU_BoW2011		
Runs Results	ActDCR	MinDCR	ActDCR	MinDCR	ActDCR	MinDCR	
CellToEar	1.0007	1.0003	1.004	0.9814	1.0365	1.0003	
Embrace	0.8	0.7794	0.8247	0.824	0.884	0.8658	
ObjectPut	1.004	0.9994	0.9983	0.9983	1.0171	1.0003	
PeopleMeet	1.0361	0.949	0.9799	0.9777	1.01	0.9724	
PeopleSplitUp	0.8433	0.7882	0.9843	0.9787	1.0217	1.0003	
PersonRuns	0.8346	0.7872	0.9702	0.9623	0.8924	0.837	
Pointing	1.0175	0.9921	0.9813	0.977	1.5186	1.0001	

Primary	CMU-IBN	/I_FV2012	Others' E	Best 2012	CMU_BoW2011		
Runs Results	ActDCR	MinDCR	ActDCR	ctDCR MinDCR		MinDCR	
CellToEar	1.0007	1.0003	1.004	0.9814	1.0365	1.0003	
Embrace	0.8	0.7794	0.8247	0.824	0.884	0.8658	
ObjectPut	1.004	0.9994	0.9983	0.9983	1.0171	1.0003	
PeopleMeet	1.0361	0.949	0.9799	0.9777	1.01	0.9724	
PeopleSplitUp	0.8433	0.7882	0.9843	0.9787	1.0217	1.0003	
PersonRuns	0.8346	0.7872	0.9702	0.9623	0.8924	0.837	
Pointing	1.0175	0.9921	0.9813	0.977	1.5186	1.0001	

- Compared to this year other teams' results (Others' Best 2012):
 - our system has better performance on 4/7 events (actual/minimum DCR of primary run).

Primary	CMU-IBN	/_FV2012	Others' E	Best 2012	CMU_BoW2011		
Runs Results	ActDCR	MinDCR	ActDCR	MinDCR	ActDCR	MinDCR	
CellToEar	1.0007	1.0003	1.004	0.9814	1.0365	1.0003	
Embrace	0.8	0.7794	0.8247	0.824	0.884	0.8658	
ObjectPut	1.004	0.9994	0.9983	0.9983	1.0171	1.0003	
PeopleMeet	1.0361	0.949	0.9799	0.9777	1.01	0.9724	
PeopleSplitUp	0.8433	0.7882	0.9843	0.9787	1.0217	1.0003	
PersonRuns	0.8346	0.7872	0.9702	0.9623	0.8924	0.837	
Pointing	1.0175	0.9921	0.9813	0.977	1.5186	1.0001	

- Compared to this year other teams' results (Others' Best 2012):
 - our system has better performance on 4/7 events (actual/minimum DCR of primary run).
- Compared to our last year system based on BoW (CMU_BoW2011):
 - this year system gets improvement on 6/7 events (actual/min DCR of primary run).

Outline

- Retrospective Event Detection
 - System Overview
 - Fisher Vector Encoding for Event Representation
 - Performance Evaluation
- Interactive Event Detection
 - Detection Results Visualization
 - Event-specific Results Visualization
 - User Feedback Utilization
 - Temporal Locality Based Search
 - Performance Evaluation

Detection Results Visualization

Problem:

- Without a good visualization method, user-system interaction can be very ineffective and inefficient.
 - E.g. one may use several minutes to judge if a system detection is true positive or false alarm.

Is this a "CellToEar"?

Detection Results Visualization

Objective:

 To find visualization methods that enable users to accurately and quickly understand detection results.

Events:	

Events: PersonRuns	s Q

Events: Pointing Q	

Event-specific Detection Visualization

Events:

PeopleSplitUp

Are they "PeopleSplitUp"? Probably...

Detection Result

Detection Result

2 F

Context

Context

Detection Result

Detection Result

Context

Context

- Different events are visualized using different schemes:
 - many low-resolution units:
 - Place multiple low-resolution units in a screen.
 - For events that can be captured by a glance.
 e.g. "PersonRuns"
 - few high-resolution units:
 - Place few high-resolution units in a screen.
 - For events that require careful checking.
 e.g. "CellToEar", "ObjectPut", "Pointing".
 - contextual units:
 - Add context next to detections.
 - For group events with multiple phrases.
 e.g. "PeopleSplitUp", "PeopleMeet",
 "Embrace".

many low-resolution units

few high-resolution units

contextual units

User Feedback Utilization

Problem:

 Without feedback utilization, the interaction is nothing but removing false alarms.

Objective:

 To efficiently reduce miss detections as well by leveraging user feedbacks.

An Observation

- A temporally clustered distribution (temporal locality):
 - We calculated the interval between consecutive events of same class in development data.
 - For some events (e.g. "Pointing", "ObjectPut", "Embrace", "PersonRuns", etc.), most of the intervals are very small (< 200 frames/8 seconds).

Temporal Locality Based Search

- What does the observation tell us?
 - If we observe one positive at somewhere, we are likely to find another positive nearby.
- Temporal locality based search:
 - After receiving one positive feedback from user, the system returns user a set of neighbors living closely to the positive. Then user can quickly go through the neighbors to find potential miss detections.

	Development Set (Training: Dev08, Testing: Eval08, Wall time: 5 mins)					Evaluation Set (Primary Run)		
Actual DCR	Retro	Naive	ESpecVis	ESpecVis+TLSearch	Retro	ESpecVis+TLSearch		
CellToEar	1.0008	1.0014	1.0008	1.0009	1.0007	1.009		
Embrace	0.9519	0.9547	0.9344	0.9115	0.8	0.6696		
ObjectPut	1.0033	1.0026	1.0024	1.0023	1.004	1.0064		
PeopleMeet	0.9381	0.9338	0.9334	0.9361	1.0361	0.9786		
PeopleSplitUp	0.8972	0.9416	0.889	0.8863	0.8433	0.8177		
PersonRuns	0.761	0.7528	0.7511	0.7366	0.8346	0.6445		
Pointing	1.0168	1.0109	1.0134	1.0084	1.0175	0.9854		

- **Retro**: retrospective event detection system output using fisher vector method.
- **Naïve**: the baseline interactive method, which linearly scans system output with only "many low-resolution units" visualization method for all events.
- **ESpecVis**: linearly scan system output with *event-specific visualization*.
- **ESpecVis+TLSearch**: scan the system output with both *event-specific visualization* and *temporal locality search*.

	Development Set (Training: Dev08, Testing: Eval08, Wall time: 5 mins)				Evaluation Set (Primary Run)		
Actual DCR	Retro	Naive	ESpecVis	ESpecVis+TLSearch	Retro	ESpecVis+TLSearch	
CellToEar	1.0008	1.0014	1.0008	1.0009	1.0007	1.009	
Embrace	0.9519	0.9547	0.9344	0.9115	0.8	0.6696	
ObjectPut	1.0033	1.0026	1.0024	1.0023	1.004	1.0064	
PeopleMeet	0.9381	0.9338	0.9334	0.9361	1.0361	0.9786	
PeopleSplitUp	0.8972	0.9416	0.889	0.8863	0.8433	0.8177	
PersonRuns	0.761	0.7528	0.7511	0.7366	0.8346	0.6445	
Pointing	1.0168	1.0109	1.0134	1.0084	1.0175	0.9854	

- **Retro**: retrospective event detection system output using fisher vector method.
- **Naïve**: the baseline interactive method, which linearly scans system output with only "many low-resolution units" visualization method for all events.
- **ESpecVis**: linearly scan system output with *event-specific visualization*.
- **ESpecVis+TLSearch**: scan the system output with both *event-specific visualization* and *temporal locality search*.

	Development Set (Training: Dev08, Testing: Eval08, Wall time: 5 mins)					Evaluation Set (Primary Run)		
Actual DCR	Retro	Naive	ESpecVis	ESpecVis+TLSearch	Retro	ESpecVis+TLSearch		
CellToEar	1.0008	1.0014	1.0008	1.0009	1.0007	1.009		
Embrace	0.9519	0.9547	0.9344	0.9115	0.8	0.6696		
ObjectPut	1.0033	1.0026	1.0024	1.0023	1.004	1.0064		
PeopleMeet	0.9381	0.9338	0.9334	0.9361	1.0361	0.9786		
PeopleSplitUp	0.8972	0.9416	0.889	0.8863	0.8433	0.8177		
PersonRuns	0.761	0.7528	0.7511	0.7366	0.8346	0.6445		
Pointing	1.0168	1.0109	1.0134	1.0084	1.0175	0.9854		

- Retro: retrospective event detection system output using fisher vector method.
- **Naïve**: the baseline interactive method, which linearly scans system output with only "many low-resolution units" visualization method for all events.
- **ESpecVis**: linearly scan system output with *event-specific visualization*.
- **ESpecVis+TLSearch**: scan the system output with both *event-specific visualization* and *temporal locality search*.

	Development Set (Training: Dev08, Testing: Eval08, Wall time: 5 mins)					Evaluation Set (Primary Run)		
Actual DCR	Retro	Naive	ESpecVis	ESpecVis+TLSearch	Retro	ESpecVis+TLSearch		
CellToEar	1.0008	1.0014	1.0008	1.0009	1.0007	1.009		
Embrace	0.9519	0.9547	0.9344	0.9115	0.8	0.6696		
ObjectPut	1.0033	1.0026	1.0024	1.0023	1.004	1.0064		
PeopleMeet	0.9381	0.9338	0.9334	0.9361	1.0361	0.9786		
PeopleSplitUp	0.8972	0.9416	0.889	0.8863	0.8433	0.8177		
PersonRuns	0.761	0.7528	0.7511	0.7366	0.8346	0.6445		
Pointing	1.0168	1.0109	1.0134	1.0084	1.0175	0.9854		

- Retro: retrospective event detection system output using fisher vector method.
- **Naïve**: the baseline interactive method, which linearly scans system output with only "many low-resolution units" visualization method for all events.
- **ESpecVis**: linearly scan system output with *event-specific visualization*.
- **ESpecVis+TLSearch**: scan the system output with both *event-specific visualization* and *temporal locality search*.

	(Training		evelopmen esting: Eval0		valuation Set (Primary Run)	
Actual DCR	Retro	Naive	ESpecVis	ESpecVis+TLSearch	Retro	ESpecVis+TLSearch
CellToEar	1.0008	1.0014	1.0008	1.0009	1.0007	1.009
Embrace	0.9519	0.9547	0.9344	0.9115	0.8	0.6696
ObjectPut	1.0033	1.0026	1.0024	1.0023	1.004	1.0064
PeopleMeet	0.9381	0.9338	0.9334	0.9361	1.0361	0.9786
PeopleSplitUp	0.8972	0.9416	0.889	0.8863	0.8433	0.8177
PersonRuns	0.761	0.7528	0.7511	0.7366	0.8346	0.6445
Pointing	1.0168	1.0109	1.0134	1.0084	1.0175	0.9854

- Retro: retrospective event detection system output using fisher vector method.
- **Naïve**: the baseline interactive method, which linearly scans system output with only "many low-resolution units" visualization method for all events.
- **ESpecVis**: linearly scan system output with *event-specific visualization*.
- **ESpecVis+TLSearch**: scan the system output with both *event-specific visualization* and *temporal locality search*.

Conclusions

Retrospective System:

- Fisher Vector coding significantly improves detection performance
 (DCR) on some events. E.g "PersonRuns", "Embrace", "PeopleSplitUp".
- The performances of "CellToEar", "Pointing" and "ObjectPut" are still not good.

Interactive System:

- Event-specific scheme should be used in detection results visualization.
- Temporal locality search can improve the performance for event with good temporal locality and reasonable system detection accuracy.

Future Works

Retrospective System:

 "Interaction-oriented" detection methods which aim to facilitate user interaction need to be studied. E.g. event spatially localization.

Interactive System:

- Better visualization techniques need to be developed for difficult events. E.g. "CellToEar", "ObjectPut".
- More user feedback utilization methods need to be studied.

Thanks!