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Processing chain : late fusion context
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IRIM group shared descriptors
CEA LIST,
SIFT BoV
Local edge patterns

ETIS/LIP6,
VLAT
Color histograms

EURECOM,
Saliency moments

INRIA Rennes,
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LABRI,
face detection
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Concepts

LIRIS,
OCLBP BoW
MFCC BoW

LISTIC,
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superpixel color sift
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IRIM descriptors
Single descriptors initial infAp disribution

Heterogeneous behaviors, each one can contribute more for 
specific concepts
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Late fusion principles

Elementary expert = 

video descriptor + optimisation + machine learning algorithm

"schemes (experts) with dissimilar outputs but comparable 
performance are more likely to give rise to effective naive 
data fusion" [Ng and Kantor]

Experts of similar types tend to give similar shot rankings, but 
they are usually complementary with experts of different 
types

Then fuse elementary experts to create higer level experts
First group similar elementary experts (clustering stage)
Fuse elementary experts in each group/family to balance 

the families (intra-group fusion)
Fuse the different groups together (inter-group fusion), 

which gives the main performance increase
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Late fusion principles (II)

Example of an automatic grouping (through automatic community 
detection)

Experts of similar types tend to give similar rankings and achieve 
similar performances

They are therefore automatically grouped in the same family

Grouping experts in 
families based on 
the similarity of 

outputs, for concept 
''Computers''
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Proposed fusion methods

Three fusion approaches are compared :

Manual hierarchical grouping

Agglomerative clustering

Community detection

Common principles :

clustering stage (manual or automatic)

intra-cluster fusion

inter-cluster fusion
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Manual hierarchical grouping

 weighted mean of normalized scores,
optimized weights

KNN scores
SIFT BoW 1024
----------------------
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SIFT BoW 1024
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...
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----------------------
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----------------------
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----------------------
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profile all
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...
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same 
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visual all

-------------------
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audio all

Fuse
versions
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different

modalities

Final 
scores

Fuse KNN-SVM
 pairs

arithmetic mean of 
normalized scores



slide 11 /21

Agglomerative clustering

Ǝ highly 
correlated

pair

no

Scores expert 1
----------------------
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...
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Scores expert 1
----------------------
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----------------------

...
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Community detection

Expert 1
----------------------

Expert 2
----------------------

...

Group into
communities

Group A : experts 1,2,8...
----------------------

Group B : experts 3,4,11
----------------------

...

Scores group A
----------------------
Scores group B
----------------------

...

Final 
scores

Fuse each
community

(sum of normalized
scores)

Fuse communities
(weighted sum 
of normalized

scores)
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Community detection : details

Group into
communities

Rank correlation coefficient

Maximisation of modularity
[Blondel et al.]

δ
ij
 = 1 if i and j 

in the same group

Score normalisation strategy
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Descriptors fusion... and performance increase

Intra fusion + inter fusion improve performances !

Single experts
performance distribution

High level experts
performance distribution.
From intra fusion
to final inter fusion

Last minute SIFT fusion
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Performances on TRECVID 2012 SIN

Type of fusion Full task Light task

0.2691 0.2851

0.2378 0.2549

0.2248 0.2535

0.3210 0.3535

infAP

Manual hierarchical fusion (Quaero1_1)

Agglomerative clustering (IRIM1_1)

Community detection (IRIM2_2)

Best performer (TokyoTechCanon2_brn_2)

Results when fusing available ALLC scores (KNN + SVM)

Some slight differences between methods inputs

Full task rank
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Performances on TRECVID 2012 SIN (re-rank)

Type of fusion % increase
Manual hierarchical fusion 0.2487 0.2691 8.2

Agglomerative clustering 0.2277 0.2378 4.4

Community detection 0.2154 0.2248 4.4

infAP no re-rank infAP with re-rank

Temporal re-ranking: video shots in the vicinity of a detected positive 
also have a chance of being positives [Safadi and Quénot 2011]

Temporal re-ranking increases average precisions
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Performances on TRECVID 2012 SIN

Performance evolution

Type of fusion Full task over Best (%)

Manual hierarchical fusion 0.2469 30.4 17.7

Agglomerative clustering 0.2247 18.6 7.2

Community detection 0.2206 16.5 5.2

Arithmetic mean 0.2097 10.7 0.0

Weighted mean 0.2183 15.3 4.1

Best expert per concept 0.1894 0.0 -9.7

infAP

over arithm (%)

2012d (x=>y) subcollections analysis details

Even the arithmetic mean greatly improves average precision.

Manual and automatic fusion methods enhance results more
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Performances on TRECVID 2012 SIN

2012d subcollections ranking 
details

The more complex fusion 
methods are more often better 
than the arithmetic (or weighted) 
mean

Manual hierarchy definitely best 
performer

For how many concepts was 
a fusion algorithm the best ?
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Performances : Method and Cost

Manual hierarchical grouping: 

best performer

low cost computational

requires human expertise

Automatic fusion methods:

No human expertise needed (faster to apply)

Automatic update when adding new inputs

Agglomerative clustering: reduces input dataset

Community detection: keeps all input dataset

… on the need of a fusion of the proposed fusion approaches ?
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Conclusions

More experts lead to better results

Even weak experts, especially if complementary, increase 
performance (resembles AdaBoost)

All methods are better than Best expert for each concept

Complex methods better than arithmetic mean (but not by 
much)

Possible improvements: combine different fusion strategies, 
various normalization strategies at different levels
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Share more, enhance more ! Let's extend the approach !

TRECVid data sharing: http://mrim.imag.fr/trecvid (login with TRECVid 
active participants' identifier and password).
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