
Kobe University and Muroran Institute of Technology at
TRECVID 2012 Semantic Indexing Task

- Fast and Exact Processing of Large-scale Video Data
based on Matrix Operation -

Kimiaki Shirahama

Muroran Institute of Technology

Kuniaki Uehara

Kobe University

Our TRECVID History

TRECVID 2012
Semantic Indexing (light)

TRECVID 2011
Semantic Indexing (light)

With bug

Bug fixed

TRECVID 2008
Search (Interactive)

TRECVID 2009
Search (Automatic)
To be precise, our methods belong to
the manually-assisted category

We achieved the highest MAP in TRECVID 2012 SIN (light) task!

MAP

Lessons That We Learned

To build accurate concept detectors,
 A large number of training examples are needed
 Features densely sampled in both the spatial and temporal dimensions are needed
 (spatially-temporally dense features)

High computational cost is required to process many training examples
and spatially-temporally dense features!

MAPs for 23 concepts in TRECVID 2011 SIN (light)

750 positive
examples &
1 keyframe
per shot

All positive
examples &
1 keyframe
per shot

All positive
examples &
1 keyframe
per second

More positive
examples

Temporally
denser

SIFT descriptors on
Harris-Laplace detector

SIFT descriptors on
dense sampling

Spatially denser

1. Fast SVM training/test based on batch computation of kernel values
2. Fast spatially-temporally dense feature extraction based on batch computation of
 probability densities
 → Shot representation considering millions of feature descriptors

3. Diversity of a concept’s appearances
 Bagging: Fuse many detectors built using different sets of training examples
 ← Owing to our fast SVM training/test method

Our Goal in TRECVID 2012

Fast processing of large-scale video data
 - Approximation (or simpler) methods degrade the detection performance
 - Parallelization using multiple processors or GPUs requires expensive hardware resources

→ Develop a fast and exact method on a single processor
 Not process data one by one, but process them in batch based on matrix operation

Motivating Example (1/3)
- Euclidian Distance Computation -

Naive implementation

Set the i-th and j-th examples

Compute the squared difference
in each dimension

Too slow!

Compute the Euclidian distance between each pair of N examples xi (D-dimensional)

Motivating Example (2/3)
- Euclidian Distance Computation -

Matrix operation

Compute the sum of elements in each column

Take the square of each element

ix

+

Motivating Example (3/3)
- Euclidian Distance Computation -

Matrix operation

Create N copies along the row direction

+

Motivating Example (3/3)
- Euclidian Distance Computation -

Matrix operation

-

Create N copies along the row direction
Create N transposed copies along the column direction

Motivating Example (3/3)
- Euclidian Distance Computation -

Effectiveness of the batch computation over the one-by-one computation!

1,000 examples 5,000 examples

Naive 200 sec 5,027 sec

Matrix operation 0.5 sec 9.7 sec

Computational time comparison
Xeon W5590 3.33GHz, Memory: 24GB
(Each example has 16,384 dimensions)

Matrix operation

Create N copies along the row direction

-

+

Create N transposed copies along the column direction

Fast SVM Training/Test

Training Test

Apply a general SVM solver (LIBSVM precomputed kernel) to kernel matrixes

Compute in batch kernel values for many training and test examples

RBF kernel:

Euclidian distance

Training examples

T
ra

in
in

g
ex

am
pl

es

Kernel matrix
Compute kernel values for each set
of 10,000 training examples

Training examples

Kernel matrix
Compute kernel values between 5,000
test examples and each set of 10,000
training examples

5,
00

0
te

st

ex
am

pl
es

Efficiency of SVM Training/Test
based on Matrix Operation

of support vectors

C
o
m

pu
ta

ti
o
na

l t
im

e
 (
se

c
)

Baseline: One-by-one computation of the kernel value between each pair of examples
 Training: Kernel values at symmetric positions are computed only once (i.e., K(xi,xj) = K(xj,xi))
 Test: kernel values are not computed for training examples, which are not support vectors

→ Computational time linearly increases depending on the number of support vectors

Matrix operation: Batch computation of kernel values

• 30,000 16,834-dimensional training examples (all positive examples, and randomly selected negative examples)
• CPU: Xeon X5690 (3.47GHz)
• MATLAB engine is used to call MATLAB functions in C++ programs
• Data loading time (about 700 sec) is excluded.

A
ir
pl

an
e_

fl
yi

ng

N
ig

h
tt

im
e

L
an

ds
ca

p
e

W
al

ki
ng

_
R

un
ni

ng

M
al

e_

P
er

so
n

About 37 times faster!

GMM-based Supervector Shot
Representation (Inoue et al.: TMM 2012)

Universal Background Model (UBM):
- Distribution of feature descriptors in the general case
- Extracted using randomly sampled feature descriptors

GMM for a shot:
- Distribution of feature descriptors in the shot

MAP Adaptation: Adopt UBM’s means based on maximum a posteriori approach

High computational cost is required to compute probability densities of
each feature descriptor xi for K multivariate normal distributions Nk

Spatially-Temporally Dense RGB SIFT (STD-RGB-SIFT):
RGB SIFT descriptors at every 6th pixel in every other frame
(Sande et al.: TPAMI 2010)
→ The number of descriptors easily reaches millions!

, where

UBM’s mean

Adapted mean

Multivariate normal distribution

Fast Spatially-Temporally Dense
Feature Extraction

Multivariate normal distribution Nk for a D-dimensional feature descriptor xi

By assuming the independence of dimensions,

Weighted Euclidian distance

Extend the batch computation of Euclidian distances to compute in batch
probability densities of many feature descriptors for K multivariate normal distributions
(For each set of 100,000 descriptors, we compute their probability densities for 512 distributions in batch)

Efficiency of STD-RGB-SIFT Extraction

Baseline: One-by-one computation of probability densities based on
 the weighted Euclidian distance formulation

Matrix operation: Batch computation of probability densities

• CPU: Xeon X5690 (3.47GHz)
• MATLAB engine is used to call MATLAB functions in C++ programs
• Each computational time includes the time required for PCA, where 384-dimensional RGB SIFT
descriptors are projected into the space of 32 independent dimensions.

of RGB SIFT descriptors

C
o
m

pu
ta

ti
o
n
al

 t
im

e
 (
se

c
)

About 5 to 7 times faster!

Effectiveness of STD-RGB-SIFT

MAP of SVMs built on each single feature (15 concepts in SIN (light))

0.302

0.071

0.276

0.114

0.238 0.231

Harris(Hessian)-Affine
detector for every other frame
(Mikolajczyk et al.: IJCV 2005)

Trajectories of densely
sampled points
(Wang et al.: CVPR 2011) STD-RGB-SIFT significantly

outperforms the other features!

Fusing Detectors on Different Features

L_A_kobe_muro_l6_1: Weighted linear fusion of 6 SVMs, each built on one feature
- Feature weights are determined by a gradient–ascend approach which maximizes the average precision.

L_A_kobe_muro_l18_3: Weighted linear fusion of 18 SVMs based on bagging
- For each feature, three SVMs are built using different sets of 30,000 training examples
 (randomly selected three-quarter of positives, and randomly selected negatives)

- Three SVMs on each feature are equally weighted using the weight obtained in L_A_kobe_muro_l6_1.

The highest MAP (0.358) in SIN light task is achieved!
Much more improvement may be achieved using a more sophisticated fusion method.

L_A_kobe_muro_l18_3
L_A_kobe_muro_l6_1

L_A_kobe_muro_l5_4: Fusion of 5 SVMs on features except STD-RGB-SIFT (Baseline)

(MAP) L_A_kobe_muro_r18_2: Fusion of 18 SVMs using rough set theory

Conclusion and Future Works

Fast and exact processing of large-scale video data based on matrix operation
1. Fast SVM training/test based on batch computation of kernel values
2. Fast spatially-temporally dense feature extraction based on batch computation
 of probability densities for multivariate normal distributions
3. Bagging to cover the diversity of a concept’s appearances, by building many
 detectors with different sets of training examples

The efficiency or effectiveness of each approach has been confirmed.
→ We achieved the highest MAP in TRECVID 2012 Semantic Indexing (light)!

Future works
1. Development of a fast feature descriptor extraction method

→ Locality sensitive hashing: Feature descriptor extraction is skipped for regions, which are
 very similar to regions in the previous frame

2. Development of a sophisticated fusion method

(Raw shot) (GMM representation) (Feature descriptors)

Slow Fast
(batch computation)

Thank you!

Acknowledgement
We greatly appreciate the useful information from Mr.
Inoue and Prof. Shinoda at Tokyo Institute of Technology

