
1 / 33

PRISMA-ORAND team: Instance Search Based on

Parallel Approximate Searches

Instance Search Task, TRECVID.

November 27, 2012

Juan Manuel Barrios1,2 and Benjamin Bustos2

1 ORAND Research Center, Chile.

2 PRISMA Research Group, Department of Computer Science, University of Chile.

2 / 33

ORAND

� Chilean private company: http://www.orand.cl

� Research Center in Computer Science + Software
Development.

� Links academy and industry in order to address
challenging problems (R&D projects).
� Search and/or detect problems in the industry.

� Study the state-of-the-art and develop new techniques in
collaboration with universities/research groups.

� Apply software engineering to produce a solution for the end user.

3 / 33

Instance Search 2012

� Objective: To find videos of a specific person, object, or

place, given visual examples.

� Video dataset:

� Dataset totals: 75.958 videos, 188 hours, 19 million frames, 46 GB.

� Average video: 9 sec. length, 647 KB, width x height= 573 x 398.

� 21 Topics:

� 15 Objects (6 logos, 9 buildings), 5 Locations, 1 Person.

� On average 4.9 visual examples per topic.

4 / 33

Example

� Topic 9061: “Pepsi logo - circle” (OBJECT)

� Expected results (videos in ground truth):

5 / 33

Computing local descriptors

� Topic 9061: “Pepsi logo - circle” (OBJECT)

� Expected results (videos in ground truth):

6 / 33

Bag-of-Visual-Words

� The most common approach for Instance Search (and
many other problems) is the well-known Bag-of-Visual-
Words (BOVW) approach.

� It was introduced as a technique to perform efficient
similarity searches in large video collections [Sivic and
Zisserman, 2003].
� The visual vocabulary (codebook) enables to create an inverted

index.

� The inverted index retrieves similar descriptors by locating
collisions.

� Enables the perform similar searches in “immediate run-
time”.

7 / 33

Bag-of-Visual-Words

� BOVW implementations usually follows three main steps:

1. Extract local descriptors for the whole dataset (or some subset).

2. Determine a codebook by calculating representative vectors for
the dataset.

� K-means algorithm due to its efficiency at large datasets.

3. For each video frame calculate a histogram with the occurrences
of each codeword.

� Every local descriptor is quantized to its nearest codeword.

� Many variants and improvements.

� BOVW achieves satisfactory results at image

classification, semantic indexing, object recognitions, etc.

8 / 33

Issues for BOVW approach

� Quantization of local descriptors produces loss of

information.

� Many techniques focuses on reducing this loss:

� Soft-assignment [Van Gemert et al., 2008].

� Hamming embedding [Jegou et al., 2008].

� Spatial pyramids [Lazebnik et al., 2006].

� Histogram of distances by codeword [Avila et al., 2011].

� Many others..

� The codebook computation is expensive:

� K-means algorithm can take several hours or days to complete.

� It is an offline process (does not use queries), hence its processing
time is not reported.

9 / 33

Research question

� Question: Can the similarity search using the whole
set of local descriptors achieve better effectiveness
than BOVW?

� If quantization produces loss of information, then avoiding
quantization might improve the effectiveness.

� The online phase will be slower (at least will not be “immediate”)

� The offline phase will not consider a expensive clustering process.

1. Scenario 1: Naïve search outperforms BOVW.

� BOVW is a technique that improves efficiency but loses information in

the quantization.

2. Scenario 2: BOVW outperforms naïve search.

� The occurrences of the codewords create new information that is not

provided by original descriptors.

� “mid-level features” [Boureau et al., 2010; Martinet el al.].

10 / 33

System Overview

Topic Dataset

11 / 33

System Overview (Step 1)

Q R

12 / 33

System Overview (Step 2)

RQ

13 / 33

System Overview (Step 3)

Score=3 Score=1

Score=2Score=0

Score=1

Topic Dataset

14 / 33

System Overview

1. Feature Extraction.

� Computation of local descriptors for topic images and mirrored
versions (Q).

� Computation of local descriptor for sampled frames of dataset
videos (R).

2. Similarity Search. For each object in Q perform a k-NN
search in R.

� Partition R in m subsets R={R1,…,Rm}.

� In parallel, using m different machines from Amazon EC2:

� For each object in Q perform an approximate k-NN search in Ri.

� Approximate search using the metric space approach.

� Merge partial results to produce the k-NN for each object in Q.

3. Instance search based on k-NN results.

� Voting algorithm based on the videos owning each NN.

15 / 33

Step 1: Feature extraction

� Keyframe selection by constant sampling.

� Two methods for interest point detection:

� Hessian-Laplace (HL).

� Maximally Stable Extremal Regions (MSER).

� Reduction of interest points by reducing frames size.

� CSIFT local descriptors (192d) for each interest point.

� “Feature Detection Code” http://www.featurespace.org/

� Submission prisma-one180px:

� 1 frame every 1.5 seconds → 480.000 frames.

� Images scaled to 180 pixels height → 345 HL/frame.

� CSIFT → 192-d vectors.

� Q= 75.000 descriptors, R= 166.000.000 descriptors.

16 / 33

Step 2: Similarity Search

� Submission prisma-one180px:

� Naïve exact search → unaffordable (a few months to complete).

� Partition R into m=10 subsets and resolve them in parallel by
different machines.

� Q= 75.000 descriptors, Ri= 16.600.000 descriptors.

� Parallel exact search → several days to resolve Q searches.

� Search using the Metric space approach:

� Similarity search and Indexing structure are based exclusively on
distances between objects: d(x,y).

� Adaptation to local descriptors of the approximate search with
pivots used at TRECVID 2011 [1].

[1] J.M.Barrios and B.Bustos. Competitive content-based video copy detection

using global descriptors. Multimedia Tools and Applications. Springer, 2011.

17 / 33

Step 2: Similarity Search

� Distance function d must satisfy the metric properties:

� Non-Negativity, Symmetry, and Triangle Inequality.

� Using a static object (called pivot), a lower bound for the distance
d(a,b) can be computed:

Lower bound: |d(a,p) - d(p,b)| ≤ d(a,b)

d(a,b) ≤ d(a,p) + d(p,b)

18 / 33

Step 2: Similarity Search

� Distance approximation:
� Use the lower bound as a fast estimator of d(a,b):

� Evaluate d(a,b) only for T% objects with lowest lower bound.

� Estimation can be improve with more pivots.

� Submission prisma-one180px:
� Parallel approximate search (T=0.5%) → a few hours to resolve Q

searches.

d(a,b) ≈ |d(a,p) - d(p,b)|

19 / 33

Step 3: Instance Search

� For each object in Q the k=50 nearest neighbors are

retrieved.

� Each NN votes in favor of the video that owns it.

� The vote is weighted according to the rank of the NN.

� Votes corresponding to a query object inside the mask are

weighted higher (*2).

� Detection score is the sum of votes.

� Late fusion (sum of scores) for candidates proceeding
from different local descriptors.

20 / 33

RESULTS

21 / 33

Results

� 24 teams, 79 automatic submissions.

� prisma-one180px:

� 1 frame every 1.5 seconds.

� Each frame scaled to 180 pixels height.

� Extracts CSIFT at HL interest points.

� Q=75.000, R=166.000.000 objects.

� Parallel search in 10 machines.

� Approximate search evaluating 0.5% of distances.

� MAP=0.140 (24th / 79)

� prisma-two180px:

� Same as previous.

� Extracts CSIFT at HL and CSIFT at MSER interest points.

� QHL=75.000, RHL=166.000.000 objects.

� QHL=44.000, RHL=95.000.000 objects.

� Parallel search in 20 machines.

� MAP=0.155 (18th / 79)

22 / 33

0.000

0.050

0.100

0.150

0.200

0.250

0.300

M
A

P

Overall Results

� MAP for the 21 topics:

prisma-two180px

prisma-one180px

prisma-four90px

prisma-two90px

23 / 33

New Submission

� prisma-two280px (not submitted):

� 1 frame every 0.5 seconds.

� Each frame scaled to 280 pixels height.

� Extracts CSIFT at HL and CSIFT at MSER interest points.

� QHL=155.000, RHL=973.000.000 objects.

� QHL=94.000, RHL=543.000.000 objects.

� Parallel search in 120 machines (in fact, 20 machines with 6
consecutive processes each one).

� Approximate search evaluating 1% of distances.

� MAP=0.210 (4th / 79)

24 / 33

0.000

0.050

0.100

0.150

0.200

0.250

0.300

M
A

P

Overall Results

� MAP for the 21 topics.

prisma-two280px

prisma-two180px

prisma-one180px

prisma-four90px

prisma-two90px

25 / 33

9052 London Underground logo

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
A

P

26 / 33

9061 Pepsi logo - circle

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

M
A

P

27 / 33

9063 Prague Castle

0

0.05

0.1

0.15

0.2

0.25

0.3

M
A

P

28 / 33

9055 Sears/Willis Tower

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
A

P

29 / 33

9060 Stephen Colbert

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
A

P

30 / 33

0

200

400

600

800

1000

1200

T
o

ta
l

ti
m

e
 (

m
in

s
)

Time

� Sum of time for all topics:

31 / 33

Conclusions

� In this work we have shown an alternative approach for the

BOVW method that may achieve high effectiveness at the
Instance Search problem.

� In order to achieve high efficiency and effectiveness we
perform several parallel approximate searches.

� The search method can easily be divided and distributed

into a network of independent machines.

� We have tested our approach using the Amazon Elastic
Compute Cloud (EC2).

32 / 33

Conclusions

� Does the similarity search on the whole set of local

descriptors achieves better effectiveness than BOVW?

� The results are not conclusive.

� The dataset was not ideal to test this statement.

� Conjecture:

� Similarity Search with no-quantization may achieve higher
effectiveness when the problem is based on duplicates, like CCD
and instance search (some topics).

� BOVW can achieve higher effectiveness when the problem is
based on generalizations or related objects, like semantic indexing,
instance search (some topics), MED.

33 / 33

P-VCD

� P-VCD is an open source software with GPL license

written in C.

� http://sourceforge.net/projects/p-vcd/

� It contains the implementations for different search
methods using the metric space approach.

� It was originally designed as an engine for content-based

video copy detection. Now we have extended it to address
the Instance Search problem.

� Its development is currently supported by ORAND, Chile.

� The project is still immature, but we encourage

researchers and advanced users to test its performance.

