PRISMA-ORAND team: Instance Search Based on Parallel Approximate Searches

Juan Manuel Barrios1,2 and Benjamin Bustos2

1 ORAND Research Center, Chile.

2 PRISMA Research Group, Department of Computer Science, University of Chile.

Instance Search Task, TRECVID.
November 27, 2012
ORAND

- Chilean private company: http://www.orand.cl
- Research Center in Computer Science + Software Development.
- Links academy and industry in order to address challenging problems (R&D projects).
 - Search and/or detect problems in the industry.
 - Study the state-of-the-art and develop new techniques in collaboration with universities/research groups.
 - Apply software engineering to produce a solution for the end user.
Instance Search 2012

- **Objective**: To find videos of a specific person, object, or place, given visual examples.

- **Video dataset**:
 - Dataset totals: 75.958 videos, 188 hours, 19 million frames, 46 GB.
 - Average video: 9 sec. length, 647 KB, width x height= 573 x 398.

- **21 Topics**:
 - 15 Objects (6 logos, 9 buildings), 5 Locations, 1 Person.
 - On average 4.9 visual examples per topic.
Example

- Topic 9061: “Pepsi logo - circle” (OBJECT)

- Expected results (videos in ground truth):
Computing local descriptors

- Topic 9061: “Pepsi logo - circle” (OBJECT)

- Expected results (videos in ground truth):
Bag-of-Visual-Words

- The most common approach for Instance Search (and many other problems) is the well-known Bag-of-Visual-Words (BOVW) approach.
- It was introduced as a technique to perform efficient similarity searches in large video collections [Sivic and Zisserman, 2003].
 - The visual vocabulary (codebook) enables to create an inverted index.
 - The inverted index retrieves similar descriptors by locating collisions.
- Enables the perform similar searches in “immediate run-time”.

![Image of visual words](image-url)
Bag-of-Visual-Words

- BOVW implementations usually follows three main steps:
 1. Extract local descriptors for the whole dataset (or some subset).
 2. Determine a codebook by calculating representative vectors for the dataset.
 - K-means algorithm due to its efficiency at large datasets.
 3. For each video frame calculate a histogram with the occurrences of each codeword.
 - Every local descriptor is quantized to its nearest codeword.

- Many variants and improvements.

- BOVW achieves satisfactory results at image classification, semantic indexing, object recognitions, etc.
Issues for BOVW approach

- Quantization of local descriptors produces loss of information.
 - Many techniques focuses on reducing this loss:
 - Soft-assignment [Van Gemert et al., 2008].
 - Hamming embedding [Jegou et al., 2008].
 - Spatial pyramids [Lazebnik et al., 2006].
 - Histogram of distances by codeword [Avila et al., 2011].
 - Many others..

- The codebook computation is expensive:
 - K-means algorithm can take several hours or days to complete.
 - It is an offline process (does not use queries), hence its processing time is not reported.
Research question

- **Question:** Can the similarity search using the whole set of local descriptors achieve better effectiveness than BOVW?
 - If quantization produces loss of information, then avoiding quantization might improve the effectiveness.
 - The online phase will be slower (at least will not be “immediate”)
 - The offline phase will not consider an expensive clustering process.

1. **Scenario 1: Naïve search outperforms BOVW.**
 - BOVW is a technique that improves efficiency but loses information in the quantization.

2. **Scenario 2: BOVW outperforms naïve search.**
 - The occurrences of the codewords create new information that is not provided by original descriptors.
 - “mid-level features” [Boureau et al., 2010; Martinet et al.].
System Overview
System Overview (Step 1)
System Overview (Step 3)
System Overview

1. **Feature Extraction.**
 - Computation of local descriptors for topic images and mirrored versions \((Q) \).
 - Computation of local descriptor for sampled frames of dataset videos \((R) \).

2. **Similarity Search.** For each object in \(Q \) perform a k-NN search in \(R \).
 - Partition \(R \) in \(m \) subsets \(R = \{R_1, \ldots, R_m\} \).
 - In parallel, using \(m \) different machines from **Amazon EC2**:
 - For each object in \(Q \) perform an approximate k-NN search in \(R_i \).
 - Approximate search using the metric space approach.
 - Merge partial results to produce the k-NN for each object in \(Q \).

3. **Instance search based on k-NN results.**
 - Voting algorithm based on the videos owning each NN.
Step 1: Feature extraction

- Keyframe selection by constant sampling.
- Two methods for interest point detection:
 - Hessian-Laplace (HL).
 - Maximally Stable Extremal Regions (MSER).
- Reduction of interest points by reducing frames size.
- CSIFT local descriptors (192d) for each interest point.

Submission **prisma-one180px**:
- 1 frame every 1.5 seconds → 480,000 frames.
- Images scaled to 180 pixels height → 345 HL/frame.
- CSIFT → 192-d vectors.
- **Q= 75,000** descriptors, **R= 166,000,000** descriptors.
Step 2: Similarity Search

- Submission **prisma-one180px**:
 - Naïve exact search → **unaffordable** (a few months to complete).
 - Partition R into $m=10$ subsets and resolve them in parallel by different machines.
 - $Q=75.000$ descriptors, $R_i=16.600.000$ descriptors.
 - Parallel exact search → several days to resolve Q searches.

- Search using the Metric space approach:
 - Similarity search and Indexing structure are based exclusively on distances between objects: $d(x,y)$.
 - Adaptation to local descriptors of the approximate search with pivots used at TRECVID 2011 [1].

Step 2: Similarity Search

- Distance function d must satisfy the metric properties:
 - Non-Negativity, Symmetry, and Triangle Inequality.

\[
d(a,b) \leq d(a,p) + d(p,b)
\]

- Using a static object (called pivot), a lower bound for the distance $d(a,b)$ can be computed:

Lower bound: \[|d(a,p) - d(p,b)| \leq d(a,b)\]
Step 2: Similarity Search

- Distance approximation:
 - Use the lower bound as a fast estimator of $d(a,b)$:
 \[d(a,b) \approx |d(a,p) - d(p,b)| \]
 - Evaluate $d(a,b)$ only for $T\%$ objects with lowest lower bound.
 - Estimation can be improved with more pivots.

- Submission **prisma-one180px**:
 - Parallel approximate search ($T=0.5\%$) → a few hours to resolve Q searches.
Step 3: Instance Search

- For each object in Q the $k=50$ nearest neighbors are retrieved.
- Each NN votes in favor of the video that owns it.
- The vote is weighted according to the rank of the NN.
- Votes corresponding to a query object inside the mask are weighted higher (*2).
- Detection score is the sum of votes.
- Late fusion (sum of scores) for candidates proceeding from different local descriptors.
RESULTS
Results

- 24 teams, 79 automatic submissions.
- **prisma-one180px:**
 - 1 frame every 1.5 seconds.
 - Each frame scaled to 180 pixels height.
 - Extracts CSIFT at HL interest points.
 - $Q=75.000$, $R=166.000.000$ objects.
 - Parallel search in 10 machines.
 - Approximate search evaluating 0.5% of distances.
 - MAP=0.140 (24th / 79)
- **prisma-two180px:**
 - Same as previous.
 - Extracts CSIFT at HL and CSIFT at MSER interest points.
 - $Q_{HL}=75.000$, $R_{HL}=166.000.000$ objects.
 - $Q_{HL}=44.000$, $R_{HL}=95.000.000$ objects.
 - Parallel search in 20 machines.
 - MAP=0.155 (18th / 79)
Overall Results

- MAP for the 21 topics:
New Submission

- **prisma-two280px (not submitted):**
 - 1 frame every 0.5 seconds.
 - Each frame scaled to 280 pixels height.
 - Extracts CSIFT at HL and CSIFT at MSER interest points.
 - $Q_{HL}=155.000$, $R_{HL}=973.000.000$ objects.
 - $Q_{HL}=94.000$, $R_{HL}=543.000.000$ objects.
 - Parallel search in 120 machines (in fact, 20 machines with 6 consecutive processes each one).
 - Approximate search evaluating 1% of distances.
 - MAP=0.210 ($4^{th}/79$)
Overall Results

- MAP for the 21 topics.
9061 Pepsi logo - circle
9063 Prague Castle
9055 Sears/Willis Tower
9060 Stephen Colbert
Time

- Sum of time for all topics:
Conclusions

- In this work we have shown an alternative approach for the BOVW method that may achieve high effectiveness at the Instance Search problem.
- In order to achieve high efficiency and effectiveness we perform several parallel approximate searches.
- The search method can easily be divided and distributed into a network of independent machines.
- We have tested our approach using the Amazon Elastic Compute Cloud (EC2).
Conclusions

- Does the similarity search on the whole set of local descriptors achieves better effectiveness than BOVW?
 - The results are not conclusive.
 - The dataset was not ideal to test this statement.

- Conjecture:
 - Similarity Search with no-quantization may achieve higher effectiveness when the problem is based on duplicates, like CCD and instance search (some topics).
 - BOVW can achieve higher effectiveness when the problem is based on generalizations or related objects, like semantic indexing, instance search (some topics), MED.
P-VCD

- P-VCD is an open source software with GPL license written in C.
 - http://sourceforge.net/projects/p-vcd/
- It contains the implementations for different search methods using the metric space approach.
- It was originally designed as an engine for content-based video copy detection. Now we have extended it to address the Instance Search problem.
- Its development is currently supported by ORAND, Chile.
- The project is still immature, but we encourage researchers and advanced users to test its performance.