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Abstract— The AXES project participated in the interactive
instance search task (INS), the semantic indexing task (SIN),
the multimedia event detection task (MED) and the multimedia
event recounting task (MER) for TRECVid 2013. Our interactive
INS focused this year on using classifiers trained at query time
with positive examples collected from external search engines.
Participants in our INS experiments were carried out by students
and researchers at Dublin City University. Our best INS runs
performed on par with the top ranked INS runs in terms of
P@10 and P@30, and around the median in terms of mAP.

For SIN, MED and MER, we use state-of-the-art low-level
descriptors for motion, image and sound as well as high-level
features for speech and text. The low-level descriptors are
aggregated with Fisher vectors into high-dimensional video-level
signatures and the high-level features are aggregated into bag-of-
word histograms. Given these features we train linear classifiers,
and use early and late-fusion to combine the different features.
Our MED system achieved the best score of all submitted runs
in the main track as well as in the ad-hoc track.

This paper describes in detail our INS, SIN, MED and MER
systems and the results and findings of our experiments.

I. INTRODUCTION

This paper describes the third participation of the EU Project
AXES at TRECVid [26]. The AXES project aims to connect
users and content from large multimedia archives by means
of technology. The project partners involved in this year’s
participation (with references to earlier participations) were:
1) Dublin City University (CLARITY: Center for Sensor Web
Technologies) [13], [40]; 2) University of Twente [2], [3];
3) Oxford University [37]; 4) KU Leuven [25]; 5) Fraunhofer;
and 6) INRIA LEAR [16], [6].

Since AXES is about bringing users, technology, and con-
tent together, we conducted interactive user experiments in
the instance search (INS). Additionally, because users often
search for events in multimedia content, we participated in
the multimedia event detection task (MED) and multimedia
event recounting (MER) tasks. The goal of the MER task
is to provide the users with a better understanding of why
certain videos were returned for a MED event query. To this
end the system returns a short-list of video fragments that
are most relevant to the event of interest, and a description
of why these fragments are relevant. We addressed this task
by applying the MED system over small video fragments of
several lengths in a sliding-window fashion, and report the
highest scoring fragments. To generate the description of the
fragments, we reported the feature source that contributed most

to the classification score, and report the highest scoring SIN
concepts in the fragment.

For MED we developed an approach based on three
low-level descriptors: SIFT [20] and color [8] features for
static visual appearance, camera-stabilized dense trajectory
features [39] for motion, and MFCC for audio. We used two
high-level features: optical character recognition (OCR) with
MSER regions [21] to capture written words, and automatic
speech recognition (ASR) to capture spoken words. The local
low-level audio-visual descriptors were aggregated into high
dimensional video-level signatures using Fisher vectors [31].
We use late-fusion to combine classifiers trained over the
individual feature channels. The system used for SIN is
similar, but does not use OCR and ASR.

This paper is structured as follows: Section II describes the
methods and the system we developed for this year’s INS
participation, including the system architecture and the user
interface. Sections III, IV, and V describe our participation
in the MED, SIN, and MER tasks respectively. Section VI de-
scribes the experiments and discusses the results and findings.
Section VII summarizes this paper.

II. INS PARTICIPATION

In this section we describe the system we developed for
this year’s INS participation. We used a service oriented
architecture for this year’s TRECVid participation, see [22]
for details. The central component of the system is our LI-
MAS service that merges search results from several retrieval
services that each produce a confidence score for each shot
whether it is relevant. The scores are then fused (combined)
according to a single confidence score, producing a list of
retrieval units (videos or shots). This list is then sent back
to the user interface. In the following, we first describe the
individual retrieval services, the fusion scheme we used, and
the employed user interface.

A. Metadata

We stored the available text for each shot in a text index.
One of the indexes featured the text extracted from the closed-
captions, a more reliable source than ASR which was used
in previous years [14]. At query time, the standard Lucene
retrieval function was used to calculate a confidence retrieval
score for each retrieval unit if the query contained any text
terms. We used Lucene version 3.1.2 [36] in our experiments.



B. On the fly instance retrieval

The aim of the instance retrieval system is to quickly
retrieve key-frames which contain queried general classes of
objects (e.g. all cars in a dataset, or all examples of gothic
architecture). The query is specified by entering a text term
which is used to train a model for the query on-the-fly.

Like last year, our system is based on the on the fly
training of a discriminative classifier, and so in addition to the
feature vectors for the dataset itself, features for negative and
positive training data related to the target query are required.
The negative training data is also sourced during the offline
stage, and is fixed for all queries. Features are computed for
∼ 1, 000 images downloaded from Google Image search using
the publicly available API and the search term ‘things’ and
‘photos’.

The features for the positive training data are computed on
the fly after the user has made a query, and again are sourced
from Google Image search, which is used to translate the user’s
textual query into a set of images. We use the top-ranking
∼ 200 images from a search for the query term entered by
the user. Features are extracted from these images in the same
way, and a linear SVM is trained against the pool of negative
training features computed during the offline stage. The output
of the classifier is a w vector of the same dimensions as the
features, and the dot product between this and all features in
the target dataset is then taken to provide an output score for
each image. Finally, this score is used to rank the images in
descending order of relevance to the entered query. As with
last year, the system follows closely the details given in [7],
with the difference this year being that we used VLAD [17]
instead of BoVW encoding.

C. On the fly Face Retrieval

The aim of the face retrieval system is to retrieve key-frames
based on the faces they contain. Given a query, a discriminative
classifier is learnt using images containing faces downloaded
from Google image search for that query.

To achieve real time performance, it is essential to perform
as much of the processing in advance. In the offline processing
faces are detected in every frame of every video and faces of
same person are linked together within a shot to form face
tracks. At the same time, nine facial features such as eyes,
nose, mouth etc. are located within every face detection using
pictorial structure based method [12], [11]. These features
provide landmarks for computing facial descriptors (feature
vectors). The whole process of representing faces in the
videos by tracks results in substantial reduction in data to be
processed. On the KIS dataset, tracking and filtering results in
reduction in the granularity of the problem from 2.9 Million
face detections to 17,390 face tracks.

Negative training images needed for training of the clas-
sifiers are taken from publicly available dataset [15]. These
images are kept the same for all queries. The face detector,
facial feature detector and appearance descriptor described
above is applied to each of the negative images to produce
feature vectors.

The online processing part consists of two steps collecting
positive training images of faces from Google and training
and ranking using a classifier. Once the features for positive
training examples are computed, a linear SVM is trained, and
used to assign scores to tracks in the corpus.

The resultant face search system can be used for searching
both for specific people as well as those with specific (facial)
attributes such as gender, facial hair, eyewear, etc. For details
of the method refer to [27].

D. On the fly Logo / Place Retrieval

The aim of the logo / place recognition system is to quickly
retrieve key-frames which contain queried specific logos or
places based on their visual appearance. A method based on
early fusion which is reranked based on geometric verification
created the classifiers which are learnt using images sourced
from Google.

The early fusion system architecture is identical to the one
described in [4], which is based on the standard specific object
retrieval approach by Philbin et al. [30] with some recent
improvements which are discussed next. RootSIFT [5] de-
scriptors are extracted from affine-Hessian interest points [28],
[1] and quantized into 1M visual words using approximate k-
means. Given a single query, the system ranks images based
on the term frequency inverse document frequency (tf-idf)
score [34]. The ranking is computed efficiently through the
use of an inverted index. Spatial reranking is performed on
the top 200 tf-idf results using an affine transformation [30].

In this on-the-fly system, given a text query of a logo or
place, example images are retrieved by textual Google image
search using the publicly available API. A visual query set
is constructed from the top 8 retrieved Google images. To
retrieve from the corpus, a visual query is issued for each
image in the query set independently and retrieved ranked lists
are combined by scoring each image by the maximum of the
individual scores obtained from each query. This is the MQ-
Max method from [4], where further details are given.

For the version with early fusion, we first build a query
specific model of the object or place. To this end, we
mine local-bag-of words around the keypoints detected in
the query images, resulting in a more powerful mid-level
representation tuned towards the object or place we want to
retrieve. Using this query specific model we construct a new
histogram representation on the fly for each database image
and retrieve images using a tf-idf based retrieval approach,
using an inverted file system. This is again followed by spatial
verification.

E. Score Fusion

Unlike last years interface, our interface this year places
more emphasis on unimodal search, and so feature fusion was
less important. The reason for this shift was based on feedback
from users in previous years – it was more difficult for them
to understand and accept results from fused sources than it
was for a unimodal search.

Where fusion was needed, we chose a relatively simple
algorithm to fuse the scores from the retrieval services. We first



Fig. 1: The AXES research user interface showing a detailed
view of the search results. Programme material c© BBC.

normalized the scores of each component to the interval [0, 1]
by dividing them through the maximum score and then fused
them using a linear combination as follows (see also [32]):

score =

n∑
i=1

scorei (1)

where score is the final score, and scorei is the confidence
score of the ith retrieval service.

F. User Interface

The user interface used for the INS task was based on a
version of the AXES Research search system interface that
was developed by the AXES consortium based on professional
user requirements and feedback from TRECVid 2011 and
2012. Figure 1 shows a screenshot of the AXES research
user interface. As with our 2012 TRECVid interface, the
AXES research interface is a browser-based user interface
targeted at traditional desktop-based interaction. The client-
side interface uses HTML5, CSS3, and Javascript, and AJAX
to communicate asynchronously with the server side.

The interface is composed of three panels: the search panel,
the retrieved results panel and the TRECVid panel.

• The search panel allows user to formulate text-based,
concept-based, or image-based queries. It supports the on
the fly concept selection and visual similarity search.

• The retrieved results panel shows the results of a query
in various ways. It also facilitates the home view, where
users can look back at historical searches without the need
to reformulate.

• The TRECVid panel features information on the current
TRECVid topic along with features which facilitate the
experiment.

1) Search Panel: Text-based queries can be entered via the
search panel at the top of the interface. If the user selects the
metadata or spoken words options, the relevance score will
be calculated based on textual metadata (author, title, short
description) or audio transcripts generated using the closed
caption data. The visual search enables the on the fly visual
concept classification, which uses images from an external
source to build a visual model of the specified text.

Fig. 2: The AXES user interface showing the home view.
Programme material c© BBC.

Multiple search types can be combined using the advanced
search option, in which case the results are compiled by fusing
the output of the selected search components.

Similarity search is based upon retrieving a set of results, the
user can add any thumbnails to the similarity search panel to
use them as query images. Images from external websites and
search engines, as well as images from the users local machine
can also be added to the similarity search by clicking on the
add external image button on the bottom right of the similarity
search area. Clicking on this button displayed a selection
overlay that allows the user to upload local images or specify
external images by pasting in the URL for the image. Images
can be removed from the similarity search panel simply by
clicking the ‘x’ in the top right corner of the thumbnail.

2) Retrieved Result Panel: The retrieved results area of
the the interface displays all videos retrieved that match the
user’s query. The results area allows the user to view the
result list using two different views: thumbnails and detailed.
In the thumbnail view, each retrieved video is represented as
a single thumbnail. User can click any thumbnail to quickly
preview the entire content of corresponding video in a popup
overlay. If the retrieved result is a segment from the video, then
the preview overlay will automatically jump to the relevant
location in the video. The advantage of this panel is that it
provides a global overview of a large number of retrieved
videos on a single screen; the disadvantage is the lack of
detailed information on the videos.

In the detailed view (Figure 1), each row contains one
retrieved video with more detailed information than what is
presented in compact panel. Each video is displayed as a
thumbnail with associated metadata, and the thumbnail may
be clicked to start a preview playback. The metadata and
matching information is located beside the thumbnails. A
coloured segment location bar is also shown in this view. It
describes the temporal location of the retrieved video segment
with respect to the overall video. The length of the grey
bar indicates video duration, while the length of orange bar
describes the duration of video segment and the position where
it is located. The duration of segment is displayed textually
over the segment location bar. Below it, there are three buttons:



Fig. 3: The asset view showing detailed information about a
single video. Programme material c© BBC.

query by keyframe, add to similarity and save video. The first
button issues a similarity search based on the current video
keyframe and only that frame. The second button adds the
keyframe to the similarity search section for future searches.
Finally videos are saved by clicking the ‘Save Video’ button.
The saved videos are stored under the ‘My Collection’ link
located on the search panel. Clicking on title shows a detailed
asset view (Figure 3) for the selected video.

3) TRECVid Panel: The TRECVid panel as seen at the
bottom of Figure 3 gives the user an overview of the current
topic for the INS task. It features a topic number, description,
exemplar images, timer and experiment control buttons. The
example images feature four images which are provided as
query images which when clicked perform a similarity search,
they can also be added to a future search or visualized in
larger forms based on mouse-over buttons. There are a further
four images which feature the extracted masks of the object
instance in question which can be used in a similar manner.
There is a timer which starts upon the users first query which
can be paused if the user needs a break for any reason. Finally,
there is a finish button which the user can use to end the current
topic if they do not wish to use the full fifteen minutes.

III. MULTIMEDIA EVENT DETECTION

In this section we describe the AXES submission to the
multimedia event detection (MED) task. In Section III-A
we describe the low-level features and their aggregation into
video-level signatures. Section III-B describes the high-level
OCR and ASR features that capture written and spoken words.
Details on classifier training and feature fusion are provided in
III-C. Figure 4 gives a schematic illustration of the processing
stages.

A. Low-level audio-visual features

In this section we describe the low-level audio-visual fea-
tures as well as feature aggregation using Fisher vectors.

1) Audio: For the audio channel we down-sample the
original audio track to 16 kHz with 16 bit resolution and then
compute Mel-frequency cepstral coefficients (MFCC) with a
window size of 25 ms and a step-size of 10 ms, keeping the
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Fig. 4: Schematic overview of the processing of a video clip
for MED.

first 12 coefficients of the final cosine transformation plus the
energy of the signal. We enhance the MFCCs with their first
and second order derivatives.

2) Image: The visual content is described by static appear-
ance and motion features. For static visual appearances we use
SIFT [20] and color features. We use the local color descriptor
of [8], which consists in computing the mean and standard
deviation on each of the three RGB channels (six values) for
16 cells in a 4×4 grid over the local image patch, yielding a
96 dimensional descriptor. We compute both descriptors on a
regular dense multi-scale sampling grid for every 60th frame.

We added spatial information to the descriptors using the
spatial Fisher vector [18]. Compared to the traditional spatial
pyramid method [19], the descriptor is much more compact
while performing similarly for Fisher vector feature encoding.
The use of color descriptors and spatial Fisher vectors is new
with respect to our MED 2012 submission.

3) Motion: Motion information is captured using recent
camera-stabilized dense trajectory features [39], which obtain
state-of-the-art results for human action recognition. This
method tracks local image features, initialized on a dense
multi-scale sampling grid, for a short time-scale of 15 frames.
Stabilization w.r.t. camera motion is obtained by estimating
the dominant motion between two successive frames, and
correcting the optical flow calculations using the estimated
motion. In addition to more accurate optical flow estimates, the
motion stabilization also allows identifying background feature
trajectories that are static once corrected with the dominant
motion. Such background features are then removed. Figure 5
illustrates the effect of camera motion stabilization.

Several features are computed along the trajectories: HOG,
HOF, and MBH. These features are similar to SIFT, but
computed over a spatio-temporal volume along the feature
tracks. While the HOG [9] descriptor encodes the spatial
intensity gradient orientation, the HOF and MBH descriptors
are based on the optical flow. The HOF descriptor encodes
the orientation distribution of the flow; correction for camera
motion is therefore important for this descriptor. The MBH
descriptor, instead, is based on the horizontal and vertical gra-
dients of the flow field, and encodes the orientation distribution
of these gradients. Just like in SIFT, these descriptors are
computed in several regular cells along each trajectory, and
then concatenated.



Fig. 5: First row: images of two consecutive frames overlaid;
second row: optical flow between the two frames; third row:
optical flow after removing camera motion; last row: trajecto-
ries removed due to camera motion in white.

The use of camera stabilization for the motion features
is new as compared to our MED 2012 submission, where
we used only MBH features computed over non-stabilized
flow [38].

4) Frame-level and video-level representation: Once the
low-level audio and visual features are extracted, we use them
to construct a signature for the video. For this feature encoding
step we proceed in the same manner for all three low-level
features and use a Fisher Vector (FV) representation [31],
an extension of the bag-of-visual-words (BoV) representation.
The Fisher vector (FV) records, for each quantization cell,
not only the number of assigned descriptors as in BoV, but
also the mean and variance of the assigned descriptors along
each dimension. Therefore, a smaller number of quantization
cells can be used compared to BoV. This resulting signature
is of dimension K(2D + 1) for K quantization cells and
D dimensional descriptors. Since the assignment of local
descriptors to quantization cells is the main computational
cost, the FV signature is faster to compute. Instead of using a
k-means clustering, a mixture of Gaussian clustering is used in
the FV representation. Local descriptors are then assigned not
only to a single quantization cell, but in a weighted manner to
multiple clusters using the posterior component probability of
the descriptor. We apply the power and `2 normalization to the
FV, as introduced in [29] for image classification. In a recent
evaluation study [24], we have shown that such normalizations
also lead to significantly better performance for action and
event recognition in videos.

For the image-based features, SIFT and color, we compute

the normalized Fisher vectors per frame, and then average and
re-normalize these to obtain the video-level representation.
This approach performed somewhat better in initial experi-
ments than directly aggregating all local descriptors of the
video in the Fisher vector. For the MFCC and motion-based
features this approach is not used, since these features are not
localized in a single frame.

B. High-level OCR and ASR features

We use automatic speech recognition (ASR) and optical
character recognition (OCR) to extract high-level features from
the videos.

1) OCR: For OCR we used the same system as in our 2012
MED submission. In each video frame (sampling rate of 5Hz),
MSER [21] regions are extracted from the luminance channel.
Regions that do not have a suitable aspect ratio or weak
gradients on their boundary are eliminated. Remaining ones
are grouped into text lines, which are further segmented into
words. Then, each region is expressed in term of a HOG-based
descriptor [10], and a RBF kernel SVM classifier (trained
on standard Windows fonts) predicts the probability of each
character. These probabilities are combined using an English
language model based on 4-grams over letters to yield the final
OCR results at the word level.

2) ASR: The ASR feature is the output of a large-
vocabulary continuous speech recognition system. The un-
derlying acoustic models are trained on approximately 100h
of American English broadcast data which was manually
transcribed. The language model includes online news and
newswire articles as well as patents. The vocabulary uses the
most frequent 130k words and provides multiple pronunci-
ations. Decoding is performed by the Julius recognition en-
gine (http://julius.sourceforge.jp/en_index.
php) with optimized parameters on automatically generated
segments with model-based speech activity detection.

3) Video-level representation: For both the OCR and ASR
output, a sparse bag-of-word descriptor is formed for each
video. It is composed of the unique words that were detected
either in the speech (for ASR) or in the text (for OCR). In
this descriptor, the words are weighted by their tf-idf score,
and then the vector is `2 normalized.

C. Classifier training and feature fusion strategies

We used linear support vector machine (SVM) classifiers,
which permit efficient training and testing. Early and late
fusion techniques are used to combine the different low-level
and high-level features.

1) Early fusion: In order to combine the trajectory-based
features and the SIFT features we use an early fusion strategy,
which consists in concatenating the FVs extracted for the dif-
ferent features. A relative scaling of the features is determined
using cross-validation in combination with a local search over
a multi-dimensional grid of the feature weighting coefficients.
The same cross-validation procedure also optimizes the hyper-
parameters of the classifiers for all features such as the
regularization strength, and the weight to balance errors in
positive and negative examples.

http://julius.sourceforge.jp/en_index.php
http://julius.sourceforge.jp/en_index.php


2) Late fusion: We include a late-fusion stage in which we
combine the early-fusion system based on trajectory and SIFT
features with the color, audio, ASR and OCR features. The late
fusion consists in finding a linear combination of the classifier
scores computed from the various sources. Late fusion training
is performed by cross-validation, i.e. the individual features are
used to learn classifiers on 75% of the data and evaluated on
the remaining 25%, which is repeated 30 times with random
train and test sets. We, then, obtain a number of test scores
for each video and for each channel, and we use all of them
to learn the late-fusion weights with a logistic discriminant
classifier.

IV. SEMANTIC INDEXING

For the SIN task we used a setup that is similar to the one
used for MED. The main difference is that we use a smaller set
of features, namely only the non-stabilized MBH features [38],
SIFT features [20] and color features [8].

a) Features: For MBH, we used the non-stabilized ver-
sion [38], with standard parameters: sampling stride of 5 pixel
and track length of 15 frames. We re-scale the videos to have
a width between 100 and 200 pixels, and sub-sampled them
temporally by skipping one frame out of two. We reduce the
MBH feature to D = 64 dimensions by PCA, and then use a
GMM with K = 256 components to aggregate them into one
Fisher vector per shot.

We extracted color and SIFT features densely across five
scales, on one frame in sixty in every shot. The local features
are then aggregated into a Fisher vector, using PCA and GMM
with parameters D = 32 and K = 256.

b) Training: We train a linear binary SVM for each
feature and concept. In order to deal with the strongly varying
number of positives and negatives per concept, we have
used all the positives and at most 100,000 negatives per
concept. For the SVM, we cross-validated per concept both
the regularization parameter and the weight of the positive vs .
the negative samples using three validation folds, where the
train/test size ratio was 75%–25% for each of the folds.

We combine the features with late fusion. First, we split the
training data into 15 folds, with a train/test size ration of 80%–
20% for each fold. For each training fold we train a binary
linear SVM using the previously learned hyper-parameters
(regularization and class weighting). We then score the test
fold and aggregate the test samples and their scores. For each
test sample we keep only the median score. Finally, we obtain
the late fusion weights by training a logistic regression on the
test scores.

V. MULTIMEDIA EVENT RECOUNTING

The goal of the MER task is to provide the users with a
better understanding of why certain videos were returned for
a MED event query. To this end the system returns a short
list of video fragments that are most relevant to the event of
interest, and a description of why these fragments are relevant.

This was our first participation to the MER task, and
we opted for a relatively simple approach which consists
in selecting the highest scoring video fragments, and using

template sentences to describe them. We did not use any
external training data, but only the data provided for the MED
and SIN tasks.

A. Descriptors and classifiers

We used the exact same descriptors and classifiers as for
MED, see Section III. The only differences are:

• for frame-level descriptors (SIFT and color), we extracted
descriptors with a higher temporal density (1 out of 30
frames).

• for the motion features, we had to re-compute the de-
scriptors because they were not stored during the MED
computation (only the per-video Fisher Vectors were)

B. Selection of video fragments

We applied the MED system over small video fragments
of several lengths in a sliding-window fashion, and report the
highest scoring fragments. The selection proceeds as follows:

1) select videos from the MED test set whose score exceed
the classification threshold for a given MED category;

2) in each selected video clip, extract all snippets of length
2, 4 and 8 seconds with a temporal spacing of 2 seconds.
Each of these snippets is scored with the MED classifiers,
and they are ranked accordingly;

3) select 5 snippets in a greedy way: take the highest-scoring
snippet that
• does not overlap with an already selected snippet (non-

maximum suppression)
• does not have the same dominant channel as an already

selected snippet. The dominant channel is the one that
contributes most to the MED score.

This rule enforces some variety in the returned snippets.

In this manner, we obtain at most five snippets correspond-
ing to the SIFT+motion features, color, MFCC, OCR and ASR
features respectively.

C. Textual description

The description is generated using several template sen-
tences. The sentence indicates which feature contributed most
to its score, e.g . when MFCC or OCR features contribute
most to the score we use sentences like: “The most relevant
information for this snippet is audio.”, or “The spotted words
‘happy’ and ‘birthday’ provide evidence for the event ‘Birth-
day Party’.” For each of the snippets we apply the SIN concept
detectors to identify objects and other scene properties. We
report the highest scoring SIN concepts in the description of
the snippet, but exclude some concepts that were observed to
perform poorly (e.g . the “Yasser Arafat” detector) or to be
of little descriptive use (e.g . “Primate”). These are reported
in a second sentence, such as “The snippet seems to contain:
‘room’, ‘dining room’, ‘girl’ and ‘boy’.”. In Figure 6 we show
the interface we use to visualize the MER results, see the
caption for a detailed description.



Fig. 6: The interface showing the MER results on an example video for the Parkour category. Below the video player is a
visualization that displays the snippet scores in a color coding (blue = low, red = high). The table below gives information on
the top-scoring snippets: the starting point, duration, scores for different feature channels, detected SIN classes, and a short
description of why the snippet was highly ranked. The description indicates the feature that contributed most to the score, and
spotted words if OCR was the strongest feature, and detected SIN classes. The user can click on the snippet number to play
the corresponding video.
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Fig. 7: Mean average precision over all submitted INS runs.
AXES runs are shown in blue and other interactive runs in
green.

VI. EXPERIMENTS

A. Instance Search

The instance search experiments were carried out at Dublin
City University in August 2013. A total of 12 people partici-
pated in the experiments. Participants were primarily research
assistants, students, and post doctoral researchers. Each par-
ticipant was assigned four or six topics and had 15 minutes to
complete each topic. Participants were briefed on the purpose
of the experiment the day it was run, and shown how to operate
the user interface. They were also given two sample topics and
some time to familiarize themselves with the interface before
the experiment.

We submitted three runs of our system for evaluation.

1) AXES_1_1: Mainly post-doctoral researchers;
2) AXES_2_2: Mainly PhD students;
3) AXES_3_3: Mainly research assistants;

Figure 7 shows mean average precision for all submitted
INS runs, with AXES runs shown in blue and other interactive
runs shown in green. From the mAP score we see that our
best system, AXES 1, only achieved median performance
compared with other participants in the INS task.

Figure 8 shows the number of correct results out of the first
10 results returned for all submitted INS runs. From this we
see that the system are comparable to other interactive systems
within this criteria

Figure 9 shows the number of correct results out of the first
100 results returned for all submitted INS runs. From here we
begin to see the decline in rank of all systems, we believe this
is due to the maximum number of returned results for a topic
being 296.
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Fig. 8: Number of correct results out of the first 10 results
returned for all submitted INS runs. AXES runs are shown in
blue and other interactive runs in green.

Figure 10 shows a more detailed plot of the proportion of
relevant videos found by the experiment participants in each
of four runs. Each bar in this plot represents the performance
of a single user on a single topic. There was, in general, more
relevant videos per topic than in TRECVid 2012. There was
also clearly quite a few very difficult topics, particularly 9071,
9084, and 9087, in which our users were able to find very few
relevant examples.

Figure 11 shows the relative proportions of relevant and
non-relevant videos saved by each participant by topic. In
comparison with TRECVid 2012, the proportion of non-
relevant videos that users believed were relevant (saved) has
significantly reduced, indicating that there was less ambiguity
in the topics this year.

B. Multimedia Event Detection

The setup of the MED 2013 evaluation is the similar to that
of 2012. The same 20 pre-specified event categories were used
as in 2012, as well as the same test set which contains 98,000
videos for a total of 4,000 hours. A set of 10 novel ad-hoc
categories were introduced this year.

1) Preliminary experiments: During the development of our
system, we used a subset of the TRECVID MED 2011 (events
E006-E015) dataset to quickly validate our methods on the
individual channels. It also allowed us to set the parameters
of the low-level descriptors. From the scores in Table I we can
draw a series of comparisons1:

• #1 vs . #2 and #3 vs . #16: the spatial Fisher improves

1The standard deviation associated each result is about 0.4 mAP points,
because of the random cross-validation folds.
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Fig. 9: Number of correct results out of the first 100 results
returned for all submitted INS runs. AXES runs are shown in
blue and other interactive runs in green.

results by 2 points (#1 is the SIFT descriptor we used in
Trecvid 2012).

• #4vs . #5 and #12vs . #13: sometimes, increasing the size
of the Fisher vectors (K set to 1024 instead of 256)
decreases performance. This was a surprise.

• #3 vs . #15: for color, increasing the vocabulary size
seems to help significantly, even when the PCA size on
the local descriptors is decreased to 32.

• #6 vs . #7: we experimented with the self-similar descrip-
tor, combined with a Fisher aggregation. Its individual
performance is reasonable, but in combination with SIFT,
it decreases. It is also expensive to compute. It is,
therefore, not not used in our system.

• #2 vs . #8: changing the power normalization from 0.5
to 0.2 increases the performace slightly (within standard
deviation).

• #10 vs . #11: the HOG+HOF combination is more ef-
fective than MBH, combining all three further improves
results in #12.

• #12 vs . #19: the SIFT descriptors are complementary to
the motion features, despite the fact that the HOG feature
is similar to SIFT.

• #17vs . #18: optical character recognition is more reliable
than speech recognition on this task.

2) Evaluation on MED 2011: To compare the state of our
system in 2011, 2012 and 2013, we evaluated it using the
TRECVid MED 2011 data set [35], and present results for
the 10 event categories that were also used in MED 2012.
For each category between 100 and 300 training videos are
available, while the null class contains 9600 videos. The test
set consists of 32,000 videos totaling 1,000 hours of video. We
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Fig. 10: Comparison of the number of relevant videos with
the number of saved (returned) videos for each of the three
AXES runs. The number of saved videos are shown as dark
blue bars; the total number of relevant videos are shown as
light brown bars.

report both the NDC error measure for the optimal threshold
(lower is better), as well as mAP (higher is better).

Besides our own results from 2011, 2012, and this year,
we also included the results of the best system that entered
in the 2011 edition [23] in Table II, as well as results of our
current system using only the motion and SIFT features. The
evaluation shows a clear progression of our results over the
years. Our current system outperforms our earlier results, and
those of [23]. It is interesting so see that using only motion and
SIFT alone our current system performs only 2.1 mAP points
worse than our full 2012 system. Among the other features,
the MFCC audio features are the most complementary to the
motion+SIFT features.

3) Description of the submission: Below, we summarize
implementation details and parameter settings for each low-
level feature used in our MED submission. Compared to the
classification step, the feature extraction is by far the most
expensive operation. For feature extraction, the computation of
the various local descriptors the most expensive part. Feature
encoding with FVs is less expensive, and is done in-memory,
so that for each video we only store the FVs to disk. The
dimension of each descriptor, and the computational costs are
summarized in Table III.

• Motion features: For the dense trajectory features2 we
used the same settings for each of the MBH, HOG and
HOF descriptors. The vocabulary size was 256, PCA was
used to reduce the dimension of the local descriptors by a

2The implementation is available at: http://lear.inrialpes.fr/
people/wang/dense_trajectories

http://lear.inrialpes.fr/people/wang/dense_trajectories
http://lear.inrialpes.fr/people/wang/dense_trajectories
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Fig. 11: Plot showing the relative proportions of relevant and
non-relevant videos saved by each participant by topic. The
dark blue bars represent the number of relevant videos; the
light brown bars represent the number of non-relevant videos.

# Channel & parameters mAP
1 SIFT, K=256 54.2
2 #1 with spatial Fisher [18] 56.2
3 Color, K=1024, PCA 32 46.8
4 Audio, K=256 33.7
5 Audio, K=1024 32.8
6 Self-similar descriptor [33] 40.7
7 #1 + #6 53.7
8 #2, power 0.2 56.6
9 #2 + #3 56.7
10 MBHx + MBHy, stabilized, K=256 58.9
11 HOF + HOG, stabilized, K=256 64.3
12 #10 + #11 65.1
13 #12, K=1024 64.3
14 MBH, K=256, not stabilized (2012 version) 54.2
15 Color, K=256, PCA 64 42.8
16 #3, spatial Fisher 48.6
17 ASR 11.8
18 OCR 16.6
19 #12 + #1 67.6

TABLE I: Results on our internal validation set of 5908 train +
6338 test videos for several low-level descriptors. We measure
the mAP over events E006 to E015. Several components with
“+” are combined with early fusion. The K parameter is the
number of components of Fisher vectors.

factor 2; the original feature dimensions are 108 for HOF,
96 for the others. Before feature extraction the videos
were re-sized spatially to be at most 480 pixels wide,
and sub-sampled temporally by a factor 2.

• SIFT: We computed SIFT descriptors on a 4x4 pixel
dense grid and 5 scales. The 128D SIFTs were reduced
to 64D by PCA and aggregated into a Fisher Vector with
256 components3, and combined with spatial informa-
tion [18].

3Code for SIFT and Fisher vector computation is available at: http://
lear.inrialpes.fr/src/inria_fisher

DCR mAP
Best TV MED 2011 result 0.437
LEAR 2011 submission 0.642
AXES 2012 0.411 44.5
AXES 2013 0.379 52.6

Components
Motion + SIFT (#19) 46.4
Color (#16) 27.7
Audio (#4) 18.2
ASR (#17) 8.2
OCR (#18) 10.8

TABLE II: Results on the MED2011 dataset, for which the
ground-truth was shared by NIST. The numbers starting with
“#” refer to Table I.

modality feature encoding dim. slowdown

Motion MBH+HOG+HOF FV 50688 10
Image SIFT FV 34559 2
Image Color FV 72703 10
Audio MFCC FV 20223 0.05
Image OCR BoW 110k (sparse) 1.5
Audio ASR BoW 110k (sparse) 3

Total — — 178173 27

TABLE III: Descriptor dimension and processing time as a
slowdown factor with respect to real video time. The total
dimension gives an order of magnitude of the storage needed
to describe the video (excluding the variable-sized sparse BoW
vectors from ASR and OCR).

• Color: Color descriptors were computed on the same
grid as SIFT, they were reduced by PCA to 32 D and
aggregated in a 1024 component Fisher vector, including
spatial information.

• MFCC: The 13 dimensional MFCC is concatenated with
its first and second derivatives, resulting in D = 39.
The MFCCs are then aggregated in Fisher vectors of
256 components.

4) Results: The main results consist two mAP values, one
across all pre-specified events, and one across all ad-hoc
events. Table IV shows that both on the pre-specified and ad-
hoc events we obtained the best results among all participants.
We did not submit runs for the 10Ex and 0Ex versions of the
challenge.

Interestingly, many participants have used similar descrip-
tors: according to the text in the submissions, MBH + Fisher
was used by at least CMU, Genie, MediaMill, NII and Sesame.
However, there are probably large differences in implementa-
tions, since the results differ significantly. It is useful to invest
a considerable amount of engineering in fine-tuning the stages
of the method.

We submitted the per-channel runs too late for the pre-
specified events, so we do not have evaluation results for
them. However, Table V compares the per-channel results on
the Ad-hoc submission. It shows that only our visual channel
is state-of-the-art, but that our other features can be further
improved. In particular our high-level ASR and OCR features

http://lear.inrialpes.fr/src/inria_fisher
http://lear.inrialpes.fr/src/inria_fisher


MED pre-specified MED ad-hoc
group mAP group mAP

AXES (1/15) 34.6 AXES (1/14) 36.6
BBNVISER (2/15) 33.0 CMU (2/14) 36.3

median 24.7 median 23.3

TABLE IV: MED results for PROGAll with 100 training
examples (100Ex).

Group Full system ASR Audio OCR Visual
AXES 36.6 1.0 12.4 1.1 29.4
CMU 36.3 5.7 16.1 3.7 28.4
BBNVISER 32.2 8.0 15.1 5.3 23.4
Sesame 25.7 3.9 5.6 0.2 23.2
MediaMill 25.3 — 5.6 — 23.8
NII 24.9 — 8.8 — 19.9
SRIAURORA 24.2 3.9 9.6 4.3 20.4
Genie 20.2 4.3 10.1 — 16.9
ORAND 3.8 — — — 3.8
IBM-Columbia 2.8 — 0.2 — 2.8
PicSOM 0.6 — 0.1 — 0.6
VisQMUL 0.2 — 0.2 — 0.2

TABLE V: Per-channel results on the MED ad-hoc categories
for 100 training examples per class (100Ex), as well as the full
system performances. Best result in each column indicated in
bold.

are relatively far from the best entries.

C. MER Results

The Multimedia Event Recounting results were evaluated
on three measures:

• Accuracy: the proportion of correctly labeled clips, as
assessed by the judge (in percent, higher is better)

• PPRT: fraction of the video time the judges spent to
evaluate the result (lower is better, > 100 % is useless, as
the judge did not gain time using the recounting system).

• precision of the observation text (OTS): how well the text
describes the video (subjective score, between 0 and 4,
higher is better).

We present a selection of the results for the MER task in Table
VI. In the left part of the table, we consider the accuracy and
the PRRT. Our accuracy result of 54.2% are ranked in the 8-th
position of the 10 participants, but only slightly below to the
median result of 56.0%. The PRRT shows that our snippets
(39.2%) tend to be somewhat shorter than the median length of
46.2%. Note that the best entry in terms of accuracy (73.3%)
is obtained when judges spend a time that is 149% of the
video length.

In the right-hand part of Table VI we consider the OTS
score. Our template sentence descriptions are ranked in the
8-th position with a score of 1.4, again this is not far from
the median value of 1.7. One of the issues with our textual
descriptions is that we simply report the best scoring SIN
concepts, whereas it may be more useful to report concepts
that are both high scoring and correlated with the category of
interest. A second limiting factor might be our use of the SIN

group Acc. PRRT group OTS
SRIAURORA (1/10) 73.3 149.0 Sesame (1/10) 2.5

AXES (8/10) 54.2 39.2 AXES (8/10) 1.4
median 56.0 46.2 median 1.7

TABLE VI: MER results. Left: accuracy and PRRT, systems
ranked for accuracy, the median is given for accuracy and
PRRT separately. Right: OTS rating of description text. See
text for details.

concept vocabulary rather than other larger and more diverse
ones.

In our submission we did not set the size of the shortlists
to be scored to optimize the precision/accuracy of the results.
It is unclear at this moment whether this might have impacted
the MER performance of our system.

D. Semantic Indexing Results

SIN was evaluated in terms of mAP across the 346 concepts.
We obtained an mAP value of 25.1%. This is the 7-th best
result across the 26 participants, and well above the median
result of 15.4% mAP, but also significantly below the best
result of 32.1% mAP. This can be considered a relatively
good result, given that we used only two channels, with
few descriptors (MBH without stabilization, SIFT and color
descriptors on sparsely sampled descriptors).

VII. SUMMARY

This paper described the AXES participation in the in-
teractive INS task, the MER task and the MED task for
TRECVid 2013. Our interactive INS used an interface which
focused on using classifiers trained at query time with positive
examples collected from external search engines. We had
twelve participants from our research carry out the interactive
experiments. Our system performed similarly to the other
best-performing interactive systems with respect to P@10 and
P@30. The recall of our system after this point, however,
decreased. We believe this was due to two reasons: first, our
users did not use the full amount of time available for each
task, and second, we had an error in our processing pipeline
which meant that shots were duplicated, effectively reducing
the number of saved shots per user by half.

Our MED, MER and SIN systems use state-of-the-art low-
level features for describing audio, static and dynamic visual
content, as well as high-level features capturing written and
spoken words. The low-level features are aggregated into
high-dimensional video-level signatures by means of Fisher
vectors, the high-level features are aggregated into bag-of-
word histograms. Our MED system achieved the best results
among all submissions both in the main track, and in the ad-
hoc track. Our MER and SIN results were less satisfying.
For SIN our results ranked 7th among the 26 participants;
our results can probably be improved by using more features
than in our current system. For MER our results ranked
8th among 10 submissions; our textual descriptions based on
template sentences and high-scoring SIN concepts leave room
for improvement.
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