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ABSTRACT

We participated in two tasks: semantic indexing (SIN) and
instance search (INS).

SIN runs

We experimented with dynamic classifier selection, fusing
input runs trained using SVM with RBF kernel on color and
texture features. All runs runs were of type M, using parts
of the IACC1 data for training, and IACC1.C as a validation
set for fusion. Three runs use different methods for selecting
the best classifier and determining the resulting score, the
fourth uses a static classifier selection (per concept), also using
IACC1.C as a validation set.

• JRS1: best in terms of AP, max. AP as score
• JRS2: best in terms of AP, max. score of all agreeing

classifiers
• JRS3: best in terms of number of correct classification,

max. score of all agreeing classifiers
• JRS4: static classifier selection based on performance on

validation set, per concept
The fused results neither outperform the best of the input

classifiers, nor the static fusion. We found that the main reason
for this is that our input classifiers yield better results in
terms of ranking than in terms of decision boundary, thus
the runs achieve better score when their MAP is determined
independently rather than when the binary classification are
used to select a classifier in fusion.

INS runs

We submitted two runs for INS:
• JRS1: Matching SIFT descriptors using GPU, absolute

number of matches
• JRS2: Matching SIFT descriptors using GPU, relative

number of matches
The results of the two runs show no differences. For some

of the queries, no results were found due to a low number of
(reliable) interest points. For the other runs, verification was
quite strict, leading to good precision for the top 10-20 ranks,
but low recall.

I. SEMANTIC INDEXING

For the TRECVID 2013 [1] semantic indexing task (SIN),
we have worked on dynamic fusion methods, i.e. data depen-
dent methods, which do not choose an overall combination of

classifiers, but take the segment to be classified into account
by selecting the (combination of) classifier(s) to be used.
Keeping constraints from practical workflows in mind, we
require that the method is able to treat the individual classifiers
as black boxes (including the choice of features used by each
of the classifiers), and that retraining of these classifiers in not
required as part of the fusion process. Thus, only late fusion
methods are to be considered.

The literature reports that data dependent classifier fusion
makes weaker assumptions on independence of the individual
classifiers, which makes the approach more flexibly applicable.
Most of the literature deals with methods for fusing binary
decisions. In the TRECVID setting we have ranked scores
with different value ranges (the decision threshold may not
always be the same), and we also need to generate a ranked
list, i.e., we need to determine appropriate scores, not just
correct classifications. The underlying assumption of dynamic
classifier selection is that each classifier has a ”region of
expertise” in the feature space where is performs well. We
based our method on the one proposed by [2] and select for
each segment to be classified a set of similar segments from a
validation set, for which ground truth annotations are available.
The selection of classifiers and the weighting of the scores
is based on the performance of the classifiers on this set. In
our experiments, the set of similar items is determined as a
superset of similar items based on the different visual features
used in the classifiers. To determine the fused classification
results, we implement the options based on different criteria
and compared then,

A. Basic input runs

In order to generate input runs for fusion, we use a set
of low-level features extracted from key frames and train a
classifier for each concept using SVMs with RBF kernel.
The following MPEG-7 [3], [4] image features were extracted
globally:

Color Layout describes the spatial distribution of colors.
This feature is computed by clustering the image into 8x8
blocks and deriving the average value for each block. After
computation of DCT and encoding, a set of low frequency
DCT components is selected (6 for the Y, 3 for the Cb and
Cr plane).

Dominant Color consists of a small number of represen-
tative colors, the fraction of the image represented by each



color cluster and its variance. We use three dominant colors
extracted by mean shift color clustering [5].

Color Structure captures both, color content and information
about the spatial arrangement of the colors. Specifically, we
compute a 32-bin histogram that counts the number of times
a color is present in an 8× 8 windowed neighborhood, as this
window progresses over the image rows and columns.

EdgeHistogram represents the spatial distribution of five
types of edges, namely four directional edges and one non-
directional edge. We use a global histogram generated directly
from the local edge histograms of 4× 4 sub-images.

The input runs for fusion are all generated using the same
algorithm, but a different subset of the training data. Table I
provides an overview of the runs and their performance.
One interesting observation on these runs is the decreasing
performance for using the

B. Fusion

The fusion method is the same as used by the SIN sub-
missions of the TOSCA-MP team. Details on the fusion
method can be found in the notebook paper of the TOSCA-
MP team [6]. For completeness, we describe the implemented
approach here.

We have implemented a dynamic classifier selection method
similar to DCS LA proposed by [2]. We use the classifier
performance of k items, which are determined based similarity
in terms of visual low-level features.

The inputs for fusion are:
• Similarity matrix between samples in the test set and

samples in the validation set
• Score from each classifier for each item in the validation

set
• Score from each classifier for each item in the test set
• Ground truth for each item in the validation set
For each test item, the k nearest neighbors in a training or

validation set are determined. Only items for which a ground
truth annotation is available are considered, and a similarity
value is stored for each item. In the TRECVID data sets,
ground truth is available for different subsets of shots for
each of the concepts. Thus the k-NN sets determined in this
step differ per concept. How the similarities are determined
is opaque to the fusion method, only similarity scores are
needed. In our experiments we used the MPEG-7 ColorLayout,
ColorStructure, DominantColor and EdgeHistogram descrip-
tors [4]. We combine the four descriptors by selecting k = 10
samples based on each of the descriptors and forming the
union of these sets. Apart from parameter k, a maximum
threshold for the similarity values for considering an item part
of the neighborhood has been determined. This value has been
set to 0.01 in the experiments. In our implementation, only the
inclusion the k-NN set is considered, but the actual similarity
scores of the items in the neighborhood are not taken into
account.

One issue is the scaling of the scores of the input classifiers.
The following two rules have been implemented. If all scores
are positive, they are shifted to have mean 0 and are scaled

to ±1. If scores are centered around 0, they are scaled to
±1. Note that this may imply different scaling factor positive
and negative values. All the input classifiers used in the
experiments fall into the second rule.

In the following we describe the different modes for select-
ing the classifier and determining the classification score.

1) Best classifier in terms of number of correct classifica-
tions (Nbest): We count the number of correct classifications
of each classifier, and select the one with the highest number of
correct classifications. The score is determined as the highest
score of all classifiers agreeing with selected one.

2) Classifier with the highest confidence (Conf): Select the
classifier with the highest confidence (absolute value) for the
classifications. Again, the score is determined as the highest
score of all classifiers agreeing with selected one.

3) Best classifier in terms of fraction of correct classifica-
tions (Fbest): We count the number of correct classifications
of each classifier, and select the one with the highest number
of correct classifications (same as Nbest). The score is then
determined from the fraction of correct classifications.

4) Classifier with max. average precision (APbest): We
determine the average precision for each classifier and we
select the classifier with the best AP. The score is determined
as the highest score of all classifiers agreeing with the best
one. If there are no relevant documents in the k-NN set, we
use mode Nbest.

5) Classifier with max. average precision (APmax): We
determine the average precision for each classifier and we
select the classifier with the best AP. The score is determined
as the average precision value of the best classifier. If there are
no relevant documents in the k-NN set, we use mode Nbest.

There is a general fallback solution for all modes, if an
item is not found in the k-NN set. We use a majority vote of
classifiers, and use the highest score of the agreeing classifiers.
If there is a tie we use the classification with the highest total
score. However, this fallback solution has only been applied to
a very small fraction of samples, so the impact on the overall
performance is minimal.

The static fusion method used in the fourth runs determines
the MAP for each classifier on the validation. For each concept
the classifier with the highest MAP is selected and applied on
the test set.

C. Results
We submitted four runs for this task, and performed five

additional runs. The runs and their parameters as well as the
MAP are shown in Table II.

As can be seen from the MAPs, we did not succeed in
outperforming individual classifiers with the fused runs. Also
the static fusion method used in JRS4 is not outperformed.
The best of the implemented fusion methods is to take score
of classifier with maximum number of correct classifications,
and using the maximum of the agreeing classifier scores.

We observe some issues with all of the fusion methods.
Selecting the best classifier in terms of the number of clas-
sifications has the risk of bias by the distribution in the k-
NN set. We tried to address this with using the average



Run description MAP
JRS1dev classifier trained on the IACC1 training set (TV2010 training) 0.036
JRS1A classifier trained on the IACC1.A training set (TV2010 test) 0.013
JRS1B classifier trained on the IACC1.B training set (TV2011 test) 0.009

TABLE I
PARAMETERS AND MAP OF THE RUNS USED AS INPUT FOR FUSION

Run input runs fusion method validation set MAP
JRS1 JRS1dev, JRS1A, JRS1B APbest IACC1.C 0.018
JRS2 JRS1dev, JRS1A, JRS1B APmax IACC1.C 0.009
JRS3 JRS1dev, JRS1A, JRS1B Nbest IACC1.C 0.025
JRS4 JRS1dev, JRS1A, JRS1B static IACC1.C 0.036
JRS5 JRS1dev, JRS1A, JRS1B Fbest IACC1.C 0.015
JRS11 JRS1dev, JRS1A, JRS1B APbest IACC1.A 0.003
JRS12 JRS1dev, JRS1A, JRS1B APmax IACC1.A 0.002
JRS13 JRS1dev, JRS1A, JRS1B Nbest IACC1.A 0.016
JRS15 JRS1dev, JRS1A, JRS1B Fbest IACC1.A 0.006

TABLE II
PARAMETERS AND MAP OF THE FUSED RUNS. RUNS 5-9 HAVE NOT BEEN OFFICIALLY SUBMITTED

precision, however, this approach runs into problems when
there are no relevant items in the neighborhood. Using the
input scores causes issues when the scaling of the scores of the
input classifiers differ strongly. Using the fraction of correct
classification has the nice property of taking the confidence
into the output score. However, as the number of items in
the neighborhood is rather small, this approach yields only
a relatively small number of distinct values, thus making the
ranking not very reliable.

We found that the main reason for the lower performance
of the fused runs is the fact, that the ranking provided by the
input classifiers used is much better than the actual decision
boundary they report. In the standalone evaluation of the runs,
the MAP is only calculated from the ranking. In contrast, for
the dynamic classifier selection we make use of the binary
classification output. There the best classifiers in terms on
standalone MAP are often discarded, as they are outperformed
by other classifiers. In addition, also the scores generated from
these classifiers with lower performance are then used. As
discussed above, using a criterion such as average precision
for classifier selection does not solve this issue, as there are
many neighborhood regions with a low number of relevant
samples. A further discussion of fixing these issues can be
found in [6].

The results of all the different fusion methods when using
the training set of one of the classifiers (IACC1.A) for the
validation for fusion are lower, but the relative differences
between the fusion methods are similar.

D. Conclusion

We have attempted to use dynamic classifier selection for
the TRECVID SIN task. As discussed above, the issue of
dealing with ranked classifier outputs and missing or unre-
liable decision boundaries is not well covered in the existing
literature. The approach we followed in our submissions was
not able to solve the issues. Thus the fused classifier was
outperformed by the best of the used input runs. There are still

a number of parameters in the approach (how to determine
partitions, which features to use), for which we have made
pragmatic decisions for the TRECVID SIN experiments and
which should be further explored.

II. INSTANCE SEARCH

For TRECVID 2013 [1] instance search (INS), we imple-
mented a system that does not perform any preprocessing, but
extracts and matches SIFT descriptors extracted from DoG
points at query time, using GPU acceleration.

The approach is based on extraction and matching of image
areas around salient key points, using the SIFT (Scale Invariant
Feature Transform) algorithm [7]. The SIFT algorithm has
become very popular due to its powerful performance and is
still used as a basic tool in the area of object recognition, near
duplicate detection and other various related tasks. Although
now almost fourteen years old, SIFT’s average performance
on object recognition is still state of the art, related algorithms
tried to replace some parts of SIFT, e.g, different key point
extraction methods (Hessian, Hessian-Affine, etc.), usage of
other descriptors [8]–[10], or focused rather on reduction
of computing power without or with only a small loss of
recognition performance, but SIFT’s recognition performance
is still competitive.

Both extraction and matching of the descriptors has been
implemented on GPU using NVIDIA CUDA1 in order to
speed up processing. Only one field of the input video is used
in order to avoid possible side effects of interlaced content.
Descriptors are extracted from every 5th frame of the video.

The SIFT algorithm is described in detail in [7], which
describes the localization, extraction and matching of key
points and its descriptors. The SIFT implementation used in
our work follows [7], but nearest neighbor search of key points
and their descriptors is implemented differently. Instead of
using best bin first (BBF) for nearest neighbor search, a brute

1http://www.nvidia.com/object/cuda home new.html



force matching on a GPU is performed, which is still faster and
easier to implement than a CPU based nearest neighbor search
based on kd-trees recommended in [7]. Matching verification
by usage of an homography still follows [7] again. The process
of key point matching results in the set of key points, which
support a meaningful homography from one frame to the
other. This number is used as a score and input to a two
dimensional matrix, where each axis denotes the timeline
of a video segment. If key points of frame fA

i (originating
from video A) are matched with key points of frame fB

j

(originating from video B), the number of matching key points
is the matrix’s value at row fA

i , column fB
j . Peaks in the

matrix indicate very similar frames, and sequences of matching
frames indicate reliable matches.

A. Results

We have submitted two runs using the method described
above. The runs differ only by the ranking criterion: JRS1 uses
the absolute number of matching interest points, and JRS2
uses the relative number. However, we found no significant
differences between the results of the two runs.

For some of the queries, no results were found due to a
low number of (reliable) interest points. For the other queries,
verification was quite strict, leading to good precision for the
top 10-20 ranks, but low recall. Figure 1 shows the results
for the queries, for which results were returned. The lower
performance for person type runs (including the statue) is
expected, as the approach used will match all person rather
than discriminating specific individuals.

In an analysis of the results we found that discarding one of
the fields was responsible for the low number of matches in
several of the cases. Due to the size reducting, the number of
key points decreased significantly. We tried to keep the both
fields in case that no interlacing artifacts were present, which
significantly increased the number of returned items.

B. Conclusion

As could be expected, an interest point based approach will
fail on small and hardly textured objects. Also, typical gradient
based descriptors are not able to discriminate between persons.
For the queries where results were found, the performance is
good at the top ranks, leading to high recall for these queries.
However, due to several spatial and temporal validation steps,
few results beyond rank 25 have been submitting, resulting in
low recall and thus overall low MAP.
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Fig. 1. Precision at top ranks and MAP for queries, for which results were returned.


