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Abstract

This paper presents our method developed for TRECVID
2013 Multimedia Event Detection task. The following two
problems are mainly addressed: The first is weakly
supervised setting where training videos contain many
shots irrelevant to a target event. The other is the
diversity of visual appearances, meaning that shots
relevant to the event are characterised by significantly
different visual appearances. To overcome these prob-
lems, Hidden Conditional Random Fields (HCRFs) are
used where the event is detected by assigning shots in
a video to hidden states, each of which represents the
compatibility between a feature combination and the
event label. Although our submitted run SiegenKobe-
Muro MED13 VisualSys PROGAll PS 100Ex 6 on the
progress search set was ranked at the low position (MAP of
4.1%), preliminary experiments on MED Test Background
set show the effectiveness and potential of our method.

1. Introduction

TREC Video Retrieval Evaluation (TRECVID) is an an-
nual worldwide competition where large-scale benchmark
video data are used to evaluate methods developed all over
the world [13]. Through this competition, TRECVID aims
to promote progress in video analysis and retrieval. At
TRECVID 2013 [8], we participated in the Multimedia
Event Detection (MED) task to identify videos where a cer-
tain event occurs. Our method developed for this is pre-
sented in this paper.

The MED task can be considered as a binary classifi-

cation problem to construct a classifier that distinguishes
videos showing an event from the other videos. The event
is defined by the event kit including the text description
and example videos. Since our main research interest is
in visual-based (content-based) event detection, we concen-
trate on developing an MED method only using example
videos. In particular, our MED method is developed by ad-
dressing the following two problems:

1. Weakly supervised setting: Weakly supervised learning
aims to construct a classifier using loosely or ambiguously
labelled examples [2]. In MED, each example video is la-
belled to only indicate whether an event occurs in it or not.
In other words, no time information about when the event
starts and ends, is not given. Thus, a classifier has to be con-
structed using example videos that include many irrelevant
shots to the event.

2. Diversity of visual appearances: Even if shots relevant
to an event are known, their visual appearances are signifi-
cantly different depending on varied camera techniques and
shooting environments. For example, the event “Birthday
party” may be characterised by shots where a birthday cake
is shown, shots where a person opens a gift, shots where
many guests are talking around a table, and so on. Since
such shots are distributed in multiple regions in the feature
space, a classifier is required to appropriately cover these
regions.

To overcome the above problems, we use a Hidden Con-
ditional Random Field (HCRF) which is a probabilistic dis-
criminative classifier with a set of hidden states [9]. Each
hidden state, which is characterised by certain features (and
the relation to the other states), represents the compatibility
between a shot and an event. Thus, in weakly supervised
setting, the HCRF can figure out what kind of shots are rel-



evant or irrelevant to the event. In addition, the diversity
of visual appearances can be covered using multiple hid-
den states. This kind of HCRF is constructed and tested
by computing the conditional probability of the event in a
video, based on the marginal probability over all possible
assignments of shots to hidden states. Experimental results
show the effectiveness of HCRFs, where hidden states ap-
propriately characterise shots that are relevant or irrelevant
to events.

2. Multimedia Event Detection based on Hid-
den Conditional Random Fields

Since an event is ‘highly-abstracted’ in the sense that it
occurs based on the interaction among various objects in
different situations. To characterise such an event, low-
level features can be considered as insufficient, because
of the huge variance in the feature space. Hence, we
adopt concept-based event detection that examines whether
a video contains an event or not, based on detection re-
sults of concepts, such as Person, Building and Car. Since
the detector of a concept is built using a large amount of
training examples, it can be robustly detected irrespective
of sizes, positions and directions on video frames. In the
case of video retrieval, state-of-the-art performance can be
achieved by using concept detection results as ‘intermedi-
ate’ features [14].

Fig. 1 shows an overview of our concept-based MED
method. First, each video is divided into shots using a sim-
ple method, where a shot boundary is detected as a signifi-
cant difference of colour histograms between two consecu-
tive video frames. Then, concepts in each shot are detected.
As a result, we obtain detection scores each of which rep-
resents the probability of a concept’s presence in the shot.
In other words, as shown in the middle of Fig. 1, a video is
represented as a multi-dimensional sequence where the time
index corresponds to shot IDs, and each shot is represented
as a vector of concept detection scores. It should be noted
that labels of an event’s occurrence or non-occurrence are
assigned only to videos. Hence, to overcome this weakly
supervised setting as well as the diversity of visual appear-
ances, an HCRF is constructed on multi-dimensional se-
quences of videos. Below, we describe the concept detec-
tion process, and the HCRF construction/test process.

2.1. Concept Detection as Feature Extrac-
tion

Since the goal of MED is the development of a gen-
eral ad-hoc event detection, features must be extracted and
frozen prior to the subsequent event detection. This means
that we cannot create features which are specialised to a
certain event, that is, we have to use the same features for
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Figure 1. An overview of our MED method.

all events. Thus, we need a concept vocabulary that is suf-
ficiently rich for describing various events. For this pur-
pose, we use Large-Scale Concept Ontology for Multimedia
(LSCOM), which is one of the most popular ontologies in
the field of multimedia retrieval [5]. LSCOM defines a stan-
dardised set of 1, 000 concepts. These are selected based on
their ‘utility’ for classifying content in videos, their ‘cover-
age’ for responding to a variety of queries, their ‘feasibility’
for automatic detection, and the ‘availability’ (observabil-
ity) of large-scale training data.

Our method represents an event as a combination of
the above LSCOM concepts. Here, even if there is no
concept ‘specific’ to an event, event detection can be per-
formed using related concepts. For example, although
Birthday Cake and Candle seem very specific to the event
“Birthday party”, they are not defined in LSCOM. In this
case, videos containing this event are characterised by re-
lated concepts, such as Indoor, Food, Table and Explo-
sion Fire.

Annotation data collected by the system in [1] are used
as training examples for constructing detectors of LSCOM
concepts. Roughly speaking, it is unmanageable for few re-
searchers to manually annotate a large number of shots in
terms of each concept’s presence or absence. Thus, the sys-



tem implements Web-based collaborative annotation to dis-
tribute manual annotation to many users on the Web. To fur-
ther improve annotation efficiency, active learning is used to
preferentially annotate shots that are promising for improv-
ing the current detector’s performance. The system targets
545, 872 shots in 27, 963 videos in terms of 500 concepts’
presences or absences. These video data and annotation
data are used in the Semantinc INdexing (SIN) task [13]1.
By analysing collected annotation data, we construct detec-
tors of 351 concepts for which more than one positive ex-
amples (shots annotated with a concept’s presence) exist.

Concept detection is conducted by the method that we
developed at the last year’s SIN task [12]. First, in order to
characterise local shapes of objects ( e.g., corners of build-
ings, vehicles, human eyes etc.), we extract Scale-Invariant
Feature Transform (SIFT) descriptors that characterise edge
shapes of local regions, detected by Harris-Affine region de-
tector [4]. In such regions, pixel values largely change in
multiple directions, so they can be regarded as useful for
characterising local shapes of objects. Then, each shot is
represented using the GMM-SuperVector (GMM-SV) rep-
resentation, which models the distribution of SIFT descrip-
tors using a Gaussian Mixture Model (GMM) [3]. Com-
pared to the traditional Bag-of-Visual-Words (BoVW) rep-
resentation based on the pre-specified template, the GMM-
SV is more flexible where a GMM of each shot is adap-
tively estimated based on SIFT descriptors. In addition,
the GMM-SV can represent variances of SIFT descriptors,
which cannot be represented by the BoVW.

Finally, using positive and negative examples for each
concept, a Support Vector Machine (SVM) with RBF ker-
nel is constructed as a concept detector. Here, randomly
selected shots are used as negative examples. Since the con-
cept is present only in a small number of shots, almost all
of randomly selected shots do not show it and can serve as
negative examples [7]. Compared to this, although anno-
tation data collected by [1] contain negative examples, our
preliminary experiment showed that they lead to worse per-
formance than randomly selected shots. One main reason is
that negative examples are similar to positive examples, be-
cause of the ‘biased’ shot selection by active learning (users
are asked to annotate shots similar to already collected pos-
itive examples). In contrast, negative examples by ‘non-
biased’ random shot selection yield more accurate concept
detection.

In the above concept detection, our method in [12] ad-
dresses the following two issues: First, a concept is not
necessarily present in all videos frames in a shot. To cover
this ‘uncertainty’ of the concept’s presence, it is required
to exhaustively extract SIFT descriptors from many video
frames. Actually, it is reported that, compared to a method

1We have these data because of our last year’s participation in the SIN
task [12].

using features only from one video frame in each shot, a
method using features from every 15 frames is more ac-
curate by 7.5 to 38.8% [15]. Second, a concept’s appear-
ances in shots are significantly different depending on cam-
era techniques and shooting environments. Hence, to cover
this diversity of the concept’s appearances, a large number
of training examples are required. In general, the perfor-
mance is proportional to the logarithm of the number of pos-
itive examples, although each concept has its own complex-
ity [6]. This means that 10 times more positive examples
improve the performance by 10%.

However, it requires expensive computational costs to
process a huge number of SIFT descriptors for GMM-SV
extraction and a large number of training examples for con-
cept detection. Thus, we developed a fast GMM-SV extrac-
tion method and a fast concept detection method based on
matrix operation [12]. The former re-formulates the prob-
ability density computation in a GMM, so that probabil-
ity densities of many SIFT descriptors can be computed in
batch. The latter re-formulates the similarity (kernel value)
computation in SVM training and test, which enables batch
computation of similarities among many training examples.
Based on these, the GMM-SV extraction and concept de-
tection become about 5-7 and 10-37 times faster than the
normal implementation, respectively. Owing to this, the
GMM-SV of each shot (in both SIN and MED videos) is
computed by extracting SIFT descriptors from every other
frame. And, each concept detector is constructed using
30, 000 training examples.

2.2. Event Detection by HCRF

Fig. 2 illustrates an HCRF that is constructed using
videos represented as multi-dimensional sequences of con-
cept detection scores. Assume M videos labelled with
an event’s occurrence and N videos labelled with its non-
occurrence are given as training videos. For the simplicity,
the former and latter videos are called positive videos and
negative videos, respectively. Each video x is represented
as a multi-dimensional sequence of K concepts’ detection
scores, that is, if x has T shots, x = {x1, · · · , xT } where
xi = (xi,1, · · · , xi,K). Fig. 2 depicts how to determine the
event label y ∈ {0, 1} of x, where 0 and 1 mean the event’s
non-occurrence and occurrence, respectively. Specifically,
xi is first assigned to a hidden state hi ∈ H, where H is
the set of hidden states. Then, y is determined by combin-
ing h = {h1, · · · , hT } assigned to x. Thus, hidden states
work as mediators between concept detection scores and an
event label. It is known that a model with hidden states has
a more powerful discrimination power than a model only
using observable values.

Compared to well-known generative models such as
Hidden Markov Models (HMMs), HCRFs have the follow-
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Figure 2. An illustration of our HCRF model.

ing advantages. First, generative models are usually con-
structed so as to maximise the likelihood of positive videos
for each label [16]. However, this is not necessarily optimal
for discriminating videos with different labels. On the other
hand, HCRFs explicitly maximise the conditional probabil-
ity of each label, given a multi-dimensional sequence. Sec-
ond, due to the tractability of generative models, each time
point is regarded as conditionally-independent of the other
time points. In other words, a state at a time point is cho-
sen only by considering states and their transitions at the
previous time point. Compared to this, HCRFs model the
conditional probability of the entire sequence using a sin-
gle probability distribution, so that long-range dependencies
among various time points can be considered. In addition,
this probability distribution is flexible where arbitrary fea-
ture representations at each time point can be incorporated.

For each training video xwith its event label y, an HCRF
is modelled based on the following conditional probability
of y given x:

P (y|x,θ) =
∑
h

P (y,h|x,θ) =

∑
h e

Ψ(y,h,x;θ)∑
y′,h e

Ψ(y′,h,x;θ)
,

(1)
where the numerator with the fixed y is normalized by the
denominator that is the sum of numerators with all y ∈ Y ,
so that equation (1) can be considered as a conditional prob-
ability. In addition, h is marginalised out by taking the sum
of P (y,h|x, θ)s over all possible assignments of h to x.
Also, Ψ(y,h,x;θ) parameterised by θ is called a potential
function, and used to examine the compatibility among x,
h and y. Various user-defined functions can be used for Ψ,
which we will discuss later.

In the HCRF, θ is learned by maximising the log-
likelihood based on conditional probabilities for each train-
ing video xi and its event label yi:

L(θ) =
∑
i

logP (yi|xi,θ)− ||θ||
2

2σ2
, (2)

where the second term is the log of a Gaussian prior of θ

with the variance σ2, and is useful for preventing θ from be-
ing over-fit to training videos. As a smaller σ is used, values
in θ are more unlikely to be extremely large. We set σ by
cross validation on training videos. To obtain the optimal
θ∗, a gradient ascent method is used where the derivative of
equation (2) in terms of each value in θ can be efficiently
computed by propagating values of Ψ for each shot in xi

and each hidden state hi in both backward and forward di-
rections (brief propagation) [9]. After θ∗ is obtained, the
relevance score of each test video x to the event is com-
puted as P (y = 1|x,θ∗) based on equation (1). The sorted
list of test videos in terms of their relevance scores to the
event is returned as the MED result.

Finally, we use the following potential function Ψ:

Ψ(y,h,x;θ) =
∑
i

xi · θstate(hi) (3)

+
∑
i

θlabel(y, hi) +
∑
i≥2

θtrans(y, hi−1, hi),

where θstate(hi) examines the compatibility between the
vector of concept detection scores xi and the hidden state
hi ∈ H. Scalars θlabel(y, hi) and θtrans(y, hi−1, hi) repre-
sent the compatibility between the label y ∈ Y and hi, and
the compatibility between y and the transition from hi−1

to hi, respectively. In total, θ to be estimated consists of
θstates with K × |H| dimensions, θlabel with |Y| × |H|
dimensions, and θtrans with |H| × |H| dimensions.

3. Experimental Results

Our shot detection method detected 51, 857, 32, 384,
180, 219 and 670, 397 shots for videos specified by event
kits, background training videos, MED Test Background
Search Set, and Progress Search Set, respectively. For all
of shots, detection scores for 351 concepts are computed
using the method in Section 2.1. Then, an HCRF is con-
structed using 100 positive videos defined by the event kit,
and negative videos including miss videos defined by this
kit and 4, 992 background training videos.

We found that HCRFs are very sensitive to the parameter
σ and initial values of θ. For the former, we first prepare the
set of possible σs as {2−3, 2−2, · · · , 26}. Then, the optimal
σ is selected by the following cross validation. The set of
training videos is divided into two parts with the same size,
where the one is used to construct an HCRF with each σ,
the other is used to validate it. Then, we select the σ which
yields the HCRF with the highest average precision, and
construct the final HCRF using all training videos and the
selected σ.

For initial values of θ, we borrow the idea of the ini-
tialisation used in HMMs [16]. The basic idea is to first
perform the ‘hard-assignment’ of shots in a video to hid-
den states, where an HCRF is initialised only using the



maximum likelihood sequence of hidden states. Then, the
HCRF is refined by conducting the ‘soft-assignment’ where
all possible sequences of hidden states are considered based
on Equation (1). To this end, we first group all shots in
training videos into clusters of shots with similar concept
detection scores. Since the number of shots to be clus-
tered is more than 30, 000, a fast clustering method based on
the repeated-bisecting algorithm [17] is employed. Starting
with a single cluster containing all shots, the cluster with
the lowest similarity between shots and the centre, is itera-
tively divided into two separate clusters. Then, each cluster
centre is regarded as θstates of a hidden state. Furthermore,
for each training video, the maximal likelihood sequence
of hidden states is computed using dynamic programming
technique. Initial values of θlabel are determined by count-
ing how many shots in positive (or negative) videos are as-
signed to each hidden state. Initial values of θtrans are set
by counting how many transitions occur between two con-
secutive shots in positive (or negative) videos. Here, the
number of shots in negative videos is much larger than the
one in positive videos. Thus, to initialise θlabel and θtrans,
each shot and each transition are weighted by the inverse of
the number of shots in positive (or negative) videos.

For our submitted run SiegenKobeMuro MED13 Visual-
Sys PROGAll PS 100Ex 6 on the Progress Search Set, we
only know the Mean of Average Precisions (MAP) for 20
events (4.1%). In addition, ground truth data are not re-
leased for the set. Hence, it is difficult to closely evaluate
our MED method. The following discussions are based on
results on MED Test Background Set.

3.1. Effectiveness for Weakly Supervised
Setting

In order to examine the effectiveness of HCRFs for
weakly supervised setting, we compare them to the follow-
ing SVMavr using the ‘average-pooling’ of concept de-
tection scores. In SVMavr, concept detection scores in
shots in a video are averaged, so that videos with differ-
ent numbers of shots can be represented as vectors with
the same dimensionality. Then, an SVM with RBF ker-
nel is constructed using the same set of training videos to
HCRFs. The above average-pooling is adopted in a state-
of-the-art MED method [10]. Using SVMavr as our base-
line, we tested the following three HCRFs. The first one
HCRF cross

10 uses 10 hidden states and the parameter σ is
determined by cross validation. However, a bad result may
be obtained by a wrongly determined σ, which makes it dif-
ficult to appropriately evaluate the effectiveness of HCRFs.
Thus, the second HCRF exhau

10 constructs classifiers with
10 hidden states using all possible σs, and manually select
the best result. The last HCRF exhau

20 uses 20 hidden states
and the same exhaustive search of σ to HCRF exhau

10 .

Fig. 3 shows the performance comparison among
SVMavr, HCRF cross

10 , HCRF exhau
10 and HCRF exhau

20 .
From the left, three sets of four bars represent performances
for “E006: Birthday party”, “E009: Getting a vehicle un-
stuck” and “E013: Parkour”, respectively. For each set,
four bars from the left depict Average Precisions (APs) of
SVMavr, HCRF cross

10 , HCRF exhau
10 and HCRF exhau

20 ,
respectively. The right-most set of four bars represents
their MAPs on the above three events. As can be seen
from Fig. 3, MAPs of HCRF cross

10 , HCRF exhau
10 and

HCRF exhau
20 are higher than that of SVMavr. This val-

idates the effectiveness of HCRFs for weakly supervised
setting.
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Figure 3. Performance comparison among
SVMavr, HCRF cross

10 , HCRF exhau
10 and

HCRF exhau
20 .

Furthermore, Fig. 3 presents that HCRF cross
10 ,

HCRF exhau
10 and HCRF exhau

20 work much better than
SVMavr for E006 and E013, while for E009, the latter
works much better than the formers. One main reason
can be considered as the number of shots in videos where
an event occurs. For each event in Fig. 3, the number in
the parenthesis represents the average number of shots in
videos where this event occurs. Fig. 3 indicates that HCRFs
are very effective for events, which are contained in videos
with many shots. On the other hand, for events which
are contained in videos with a small number of shots, the
average-pooling does not lose much information, and a
non-linear SVM can construct a more precise classifier
than HCRFs, where each hidden state is based mainly on a
linear combination of concept detection scores.



3.2. Evaluation for the Diversity of Visual
Appearances

We examine whether HCRFs appropriately cover the
diversity of visual appearances in shots relevant to an
event. First, we investigate how the performance of HCRFs
changes depending on numbers of hidden states. Fig. 4
shows the transition of HCRFs’ performances using 5, 10
and 20 hidden states. The horizontal and vertical axes rep-
resent the number of hidden states and AP, respectively. The
line overlaid by cross marks depicts the transition of MAPs
on three events, and each of the other lines presents the tran-
sition of APs on a single event. As can be seen from Fig. 4,
as the number of hidden states increases, the performance is
improved. This means that more diverse visual appearances
are covered by a larger number of hidden states. However,
considering the computational cost, using 10 hidden states
seems a reasonable choice.

0

0.05

0.1

0.15

0.2

105 20

(Average precision)

(Number of hidden states)E006 E009

E013 MAP

Figure 4. Performance comparison depend-
ing on numbers of hidden states.

Now, we check whether hidden states appropriately char-
acterise concepts relevant to each event. Table 1 represents
the two most specific hidden states, that is, these states
are associated with the largest values of θlabel(y = 1, h)
(h ∈ H). In Table 1, 10 rows under the row of θlabel
present the 10 most characteristic concepts of each hid-
den state. These concepts are associated with the largest
θstate(h) values, which are shown in the left side of con-
cept names. As seen from Table 1, HCRFs appropriately
identify relevant concepts to an event, for instance, Night-
time and Entertainment for E006 (candle fire is blown in
a dark scene), Car and Desert for E009 (a car often gets
unstuck on an unstable ground), and City and Sports for
E013 (a person does acrobatic performance in a scene with
many buildings). However, θstate(h) values wrongly be-
come large for some irrelevant concepts. Event detection

performance may be further improved by improving the pa-
rameter estimation method as well as the concept detection
method,

3.3. Other Issues of HCRFs

In our concept-based MED method, if there is no con-
cept that is very specific to an event, event detection is con-
ducted only using related concepts. Although this works
reasonably well as shown in Fig. 3, the performance may
be further improved if we use low-level features that are
very specific to positive videos of the event. Regarding this,
considering the computational cost of HCRFs, the 16, 384-
dimensional GMM-SV shot representation (used in concept
detection) is projected into a 300-dimensional vector using
Principle Component Analysis (PCA). Then, this is con-
catenated with the 351-dimensional vector of concept de-
tection scores. Finally, HCRFs are constructed on multi-
dimensional sequences of 651-dimensional vectors.

0

0.05

0.1

0.15
(Average precision)

E006 E009 E013
Without the low-level feature

With the low-level feature

Figure 5. Performance comparison between
HCRFs with and without the low-level feature.

Fig. 5 presents the performance comparison between
HCRFs with the low-level feature and the ones without it.
For each event, APs of the former and latter are represented
by the left and right bars, respectively. As can be seen from
Fig. 5, the low-level feature improves performances for all
events. In the future, we plan to develop a fast HCRF con-
struction method using a parallelisation technique, so that a
precise low-level feature with a large dimensionality can be
incorporated into HCRFs.



Table 1. θstate and θlabel of two hidden states that are the most specific to each event.
E006 E009 E013

θlabel -1.02673 (y = 0), 0.68962 (y = 1) -1.43996 (y = 0), 1.25235 (y = 1) -1.04382 (y = 0), 0.49446 (y = 1)

θstate

0.325544 Nighttime 1.22158 Car 0.2102 Traffic
0.222349 Entertainment 1.02419 Vegetation 0.197403 Highway
0.179148 Singing 0.87349 Ground Vehicles 0.125676 Boat Ship
0.16946 Moonlight 0.86119 Minivan 0.114006 Roadway Junction
0.164473 Instrumental Musician 0.85135 Vehicle 0.109518 Road Overpass
0.072733 Male-Human-Face-Closeup 0.83781 Vertebrate 0.107198 City
0.065308 Female-Human-Face-Closeup 0.83366 Caucasians 0.100696 Clouds
0.044678 Teenagers 0.80972 Civilian Person 0.095378 Cityscape
0.043392 Celebrity Entertainment 0.75841 Desert 0.092057 Lakes
0.042143 Bar Pub 0.73438 Still Image 0.081934 Beach

θstate -0.86014 (y = 0), 0.86373 (y = 1) -0.60550 (y = 0), 0.59238 (y = 1) -0.76978 (y = 0), 1.34114 (y = 1)

θstate

1.04656 Urban Park 0.15241 Trees 1.17725 Overlaid Text
0.98792 Sofa 0.12417 Plant 1.05735 Eukaryotic Organism
0.81578 Black Frame 0.12025 Vegetation 1.02866 Daytime Outdoor
0.78161 Female Person 0.09553 Explosion Fire 0.952493 Sports
0.75133 Two People 0.08924 Landscape 0.805294 Graphic
0.69272 Girl 0.06247 Entertainment 0.801412 Urban Scenes
0.68596 Dining Room 0.06099 Text On Artificial Background 0.794455 Indoor
0.65595 Stadium 0.05712 Forest 0.782468 Person
0.64758 Food 0.05313 Weapons 0.766389 Vegetation
0.64573 Nighttime 0.05138 Highway 0.716736 Weapons

4. Conclusion and Future Work

In this paper, we introduced our concept-based MED
method using HCRFs. First, every video is represented as
a multi-dimensional sequence, where each shot is defined
as a vector of concept detection scores. Then, an HCRF
is constructed to overcome weakly supervised setting and
the diversity of visual appearances in shots. In the HCRF,
shots in a video are assigned to hidden states, each of which
represents the compatibility between a vector of concept de-
tection scores and an event label. Experimental results on
MED Test Background Search Set show the effectiveness of
HCRFs compared to SVMs. In addition, hidden states can
appropriately discriminate between relevant and irrelevant
shots to an event, and the diversity of visual appearances
can be covered using multiple hidden states.

In the future, we will address the following three issues
to improve the performance. First, due to the time limi-
tation and the very large size of video data, our current
method only uses one image feature (SIFT). Thus, by ex-
tracting all features (RGB SIFT, motion, and audio) used in
our last year’s SIN method [12], we will improve the per-
formance of concept detection, which will lead to the im-
provement of event detection. Second, the current HCRF’s
parameter estimation takes long computational time. The
reason is that the gradient ascent method requires many it-
erations, in each of which shots in all training videos have
to be checked to obtain the derivative of parameters. Hence,
we plan to parallelise the parameter estimation process us-
ing multiple processors, each of which processes shots in a
subset of training videos.

Finally, in general HCRFs, long-range dependencies
among shots are treated by a window approach, where
vectors of concept detection scores for consecutive shots
are combined into a large-dimensional vector. However,
this causes a significant increase of the number of param-
eters to be estimated (i.e., the dimensionality of θstate),
which in turn requires prohibitive computational cost. To
overcome this, the method that we developed in [11] will
be used, where the continuity of each concept’s presence
over consecutive shots is modelled based on time series
segmentation. Then, only the vector where each dimension
represents the continuity of a concept’s presence, is incor-
porated into HCRFs.
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