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1 Introduction

This introduction to the TREC Video Retrieval Eval-
uation (TRECVID) 2013 will be expanded and rere-
leased in early 2014 with a discussion of approaches
and results.

TRECVID 2013 was a TREC-style video analy-
sis and retrieval evaluation, the goal of which re-
mains to promote progress in content-based exploita-
tion of digital video via open, metrics-based evalua-
tion. Over the last ten years this effort has yielded a
better understanding of how systems can effectively
accomplish such processing and how one can reliably
benchmark their performance. TRECVID is funded
by the National Institute of Standards and Tech-
nology (NIST) and other US government agencies.
Many organizations and individuals worldwide con-
tribute significant time and effort.

TRECVID 2013 represented a continuation of five
tasks from 2012. Fifty-one teams (see Tables 1 and
2) from various research organizations — 20 from Eu-
rope, 20 from Asia, 9 from North America, and 2
from South America — completed one or more of
five tasks:

1. Semantic indexing
2. Instance search
3. Multimedia event detection
4. Multimedia event recounting
5. Surveillance event detection

Some 200 h of short videos from the Internet
Archive (archive.org), available under Creative Com-
mons licenses (IACC.2), were used for semantic in-
dexing. Unlike previously used professionally edited
broadcast news and educational programming, the
IACC videos reflect a wide variety of content, style,
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and source device - determined only by the self-
selected donors. About 464 h of new BBC East-
Enders video was used for the instance search task.
45 h of airport surveillance video was reused for the
surveillance event detection task. Almost 5200 h
from the Heterogeneous Audio Visual Internet Cor-
pus (HAVIC) of Internet videos was used for develop-
ment and testing in the multimedia event detection
task.

Instance search results were judged by NIST asses-
sors - similarly for the semantic indexing task with
additional assessments done in France under the Eu-
ropean Quaero program (QUAERO, 2010). Multi-
media and surveillance event detection were scored
by NIST using ground truth created manually by the
Linguistic Data Consortium under contract to NIST.
The multimedia event recounting task was judged by
humans experts in an evaluation designed by NIST.

Disclaimer: Certain commercial entities, equip-
ment, or materials may be identified in this docu-
ment in order to describe an experimental procedure
or concept adequately. Such identification is not in-
tended to imply recommendation or endorsement by
the National Institute of Standards, nor is it intended
to imply that the entities, materials, or equipment are
necessarily the best available for the purpose.

2 Data

2.1 Video

BBC EastEnders video

The BBC in collaboration with the European Union’s
AXES project (www.axes-project.eu) made 464 h of
the popular and long-running soap opera EastEnders
available to TRECVID for research. The data com-
prise 244 weekly “omnibus” broadcast files (divided
into 471 527 shots), transcripts, and a small amount
of additional metadata.

Internet Archive Creative Commons (IACC.2)
video

The IACC.2 dataset comprises 7300 Internet Archive
(archive.org) videos (144 GB, 600 h) with Creative
Commons licenses in MPEG-4/H.264 format with du-
ration ranging from 10 s to 6.4 min and a mean du-
ration of almost 5 min. Most videos have some meta-
data provided by the donor available e.g., title, key-
words, and description

For 2013, approximately 600 additional h of Inter-
net Archive videos with Creative Commons licenses
in MPEG-4/H.264 and with durations between 10 s
and 6.4 min were used as new test data. This data
was randomly divided into 3 datasets: IACC.2.A,
IACC.2.B, and IACC.2.C. IACC.2.A is the test
dataset for semantic indexing in 2013; IACC.2.B and
IACC.2.C were available for gauging current systems
against future test data under the “progress” op-
tion in the semantic indexing task. Most videos
had some donor-supplied metadata available e.g., ti-
tle, keywords, and description. Approximately 600 h
of IACC.1 videos were available for system develop-
ment.

As in the past, LIMSI and Vocapia Research pro-
vided automatic speech recognition for the English
speech in the IACC.2 video.

iLIDS Multiple Camera Tracking Data

The iLIDS Multiple Camera Tracking data consisted
of ≈150 h of indoor airport surveillance video col-
lected in a busy airport environment by the United
Kingdom (UK) Center for Applied Science and
Technology (CAST). The dataset utilized 5, frame-
synchronized cameras.

The training video consisted of the ≈100 h of data
used for SED 2008 evaluation. The evaluation video
consisted of the same additional ≈50 h of data from
Imagery Library for Intelligent Detection System’s
(iLIDS) multiple camera tracking scenario data used
for the 2009 - 2013 evaluations(UKHO-CPNI, 2007
(accessed June 30, 2009)).

One third of the evaluation video was annotated by
the Linguistic Data Consortium using a triple-pass
annotation procedure. Seven of the ten annotated
events were used for the 2013 evaluation.

Heterogeneous Audio Visual Internet Corpus
(HAVIC)

HAVIC ((Strassel et al., 2012)) is a large corpus
of Internet multimedia files collected by the Lin-
guistic Data Consortium and distributed as MPEG-
4 (MPEG-4, 2010) formatted files containing H.264
(H.264, 2010) encoded video and MPEG-4s Advanced
Audio Coding (ACC) (ACC, 2010) encoded audio.

This year, the HAVIC system development mate-
rials were re-partitioned into the follow data compo-
nents:

• Event kits [290 h] (event training material for 40
events),
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Table 1: Participants and tasks

Task Location TeamID Participants

−− MD MR −− SI Eur PicSOM Aalto U.
−− −− −− SD −− NAm ATTLabs AT&T Labs Research
−− −− −− SD −− Asia BIT Beijing Institute of Techonolgy
−− MD MR SD SI NAm Inf Carnegie Mellon U.
IN −− −− −− ∗∗ Eur CEALIST CEA LIST, Vision & Content Engineering Lab
IN ∗∗ −− −− SI Eur IRIM IRIM Consortium
IN MD MR −− SI Asia VIREO City U. of Hong Kong
−− −− −− SD SI Eur dcu... Dublin City U., Univ of Ulster,, Vicomtech-IK4
IN MD MR −− SI Eur AXES Access to Audiovisual Archives
IN −− −− −− −− Eur iAD DCU Dublin City U., U. of Tromso
−− −− −− −− SI Eur EURECOM EURECOM
−− −− −− −− SI Eur VIDEOSENSE EURECOM, LIRIS, LIF, LIG, Ghanni
∗∗ ∗∗ −− −− SI Eur TOSCA EuropeOrganization(s)
−− −− −− −− SI NAm FIU UM Florida International Univ, Univ. of Miami
−− −− −− −− SI Eur FHHI Fraunhofer Heinrich Hertz Institute, Berlin
−− −− −− −− SI Asia HFUT Hefei U. of Tech.
∗∗ MD MR SD SI NAm IBM... IBM T. J. Watson Research Center
IN MD MR −− SI Eur ITI CERTH Centre for Research & Tech. Hellas
−− ∗∗ −− −− SI Eur Quaero INRIA, LIG, KIT
IN −− −− −− −− Eur ARTEMIS Institut Mines-Telecom; Telecom SudParis; ARTEMIS
−− MD −− −− −− Eur,Asia siegen... U. of Siegen, Kobe U., Muroran Institute of Tech.
IN ∗∗ −− −− SI Eur JRS JOANNEUM RESEARCH FmbH
−− MD MR −− −− NAm GENIE Kitware, Inc.
IN ∗∗ −− SD ∗∗ Asia BUPT... Beijing Univ. of Posts & Telecommunications
IN −− −− −− −− Asia MIC TJ Tongji U.
IN MD ∗∗ ∗∗ SI Asia NII National Institute of Informatics
−− −− −− −− SI Asia NHKSTRL NHK (Japan Broadcasting Corp.)
−− −− −− −− SI Asia ntt NTT Media Intelligence Labs, Dalian Univ of Tech.
IN ∗∗ −− −− −− Asia NTT NII NTT, NII
IN MD −− ∗∗ −− SAm ORAND ORAND S.A. Chile
IN ∗∗ ∗∗ −− SI Asia FTRDBJ Orange Labs International Centers China
IN −− −− −− −− Asia IMP Osaka Prefecture U.
−− −− −− SD −− Asia PKU OS Peking U.-OS
IN ∗∗ −− ∗∗ ∗∗ Asia PKU-ICST Peking U.-ICST
−− MD −− −− −− Eur Vis QMUL Queen Mary, U. of London
−− MD MR −− −− NAm BBNVISER Raytheon
−− MD MR −− −− NAm,Eur SRI SESAME SRI International U. of Amsterdam
−− MD MR −− SI NAm SRIAURORA SRI, Sarnoff, Central Fl.U., U. Mass., Cycorp, ICSI, Berkeley
−− −− −− SD −− NAm ccnysri The City College of New York SRI-International Sarnoff
IN MD −− −− −− Eur TNO M3 TNO
IN MD ∗∗ ∗∗ SI Asia TokyoTech... Tokyo Institute of Tech. Canon Inc.
IN −− −− ∗∗ −− Asia thu.ridl Tsinghua U.
IN −− −− −− SI Eur,Asia sheffield U. of Sheffield, Harbin Engineering U., PRC U. of Eng. & Tech.
∗∗ ∗∗ −− ∗∗ SI SAm MindLAB Universidad Nacional de Colombia
IN MD ∗∗ −− SI Eur MediaMill U. of Amsterdam
∗∗ ∗∗ −− −− SI Asia UEC U. of Electro-Communications
−− MD −− −− −− NAm,Asia UMass U. of Massachusetts Amherst, U. of Science & Tech. Beijing
−− −− −− SD −− NAm VIVA... U. of Ottawa, Ecole Polytechnique de Montreal
IN −− −− −− −− Asia NERCMS Wuhan U.

Task legend. IN:instance search; MD:multimedia event detection; MR:multimedia event recounting; SD: surveillance event detection; SI:semantic indexing;
−−:no run planned; ∗∗:planned but not submitted

Table 2: Participants who did not submit any runs

IN—–MD—–MR—–SD—–SI Location TeamID Participants

−− ∗∗ ∗∗ −− −− Eur Bilkent RETINA Bilkent U.
∗∗ −− −− ∗∗ −− Eur Brno Brno U. of Tech.
−− −− −− −− ∗∗ Eur ECL LIRIS Ecole Centrale de Lyon LIRIS UMR 5205 CNRS
−− ∗∗ −− −− −− NAm KBVR Etter Solutions LLC
∗∗ −− −− −− ∗∗ Asia IRC FZU Fuzhou U.
−− ∗∗ ∗∗ ∗∗ −− Asia IITH Indian Institute of Tech. Hyderabad
−− ∗∗ −− ∗∗ −− Eur INRIA STARS INRIA - STARS
∗∗ ∗∗ ∗∗ ∗∗ ∗∗ Asia ECNU Institute of Computer Applications
∗∗ −− −− ∗∗ ∗∗ SAm RECOD U. of Campinas
−− ∗∗ −− ∗∗ −− Asia VCAX Xi’an Jiaotong U.
∗∗ ∗∗ ∗∗ ∗∗ ∗∗ Asia IMG THU Tsinghua U.
∗∗ −− −− −− −− Eur Lincoln scs Lincoln U.
−− −− −− ∗∗ ∗∗ NAm LANL DSGM Los Alamos National Lab
∗∗ −− −− −− −− Asia MML MML,(CITI) of Academia Sinica
−− ∗∗ ∗∗ ∗∗ −− Asia MMM TJU MMM TJU
−− −− −− ∗∗ −− NAm Noblis Noblis, Inc.
−− ∗∗ −− −− −− NAm,Asia OMGA OMRON Corporation, Georgia Institute of Tech.
−− −− −− ∗∗ −− NAm CBSA Canada Border Services Agency
−− ∗∗ −− ∗∗ −− Asia SYSU IMC Sun Yat-sen U.
−− −− −− ∗∗ −− Asia TYUT *** Taiyuan U. of Tech.
∗∗ −− −− ∗∗ −− NAm UCSB UCR U. of California - Santa Barbara, U. of California - Riverside
−− ∗∗ −− −− ∗∗ Eur DCAPI U. of Lincoln
∗∗ −− −− −− −− Asia U tokushima U. of Tokushima
−− ∗∗ ∗∗ −− −− Eur IMS Vienna U. of Tech.
∗∗ ∗∗ −− −− ∗∗ Eur WIDEIO WIDE IO LTD

Task legend. IN:instance search; MD:multimedia event detection; MR:multimedia event recounting; SD: surveillance event detection; SI:semantic indexing;
−−: no run planned; ∗∗:planned but not submitted
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• Research Resources [314 h] (development re-
sources composed of MED11 (2011 MED data)
Development data and a portion of the MED11
Test data that may be altered, amended or anno-
tated in any way participants need to facilitate
their research),

• MEDTest [837 h] (a site-internal testing data
set composed of a subset of the MED11 Test
data that is structured as fixed background [non-
event] clip set and additional positive examples
for test events),

• KindredTest [675 h] (an internal testing data
structured as a fixed set of background [non-
event] clips that contain a ’city building exte-
rior’ and the same event positives as used in the
MEDTest collection.)

The evaluation corpus was the 3722 hour MED
Progress Collection (PROGAll) and a new, 1243 hour
subset or PROGAll (designated PROGSub) to give
participants the option to process less test collection
data.

3 Semantic indexing

A potentially important asset to help video
search/navigation is the ability to automatically
identify the occurrence of various semantic fea-
tures/concepts such as “Indoor/Outdoor”,”People”,
“Speech” etc., which occur frequently in video infor-
mation. The ability to detect features is an interest-
ing challenge by itself but takes on added importance
to the extent it can serve as a reusable, extensible ba-
sis for query formation and search. The semantic in-
dexing task was a follow-on to the feature extraction
task. It was coordinated by NIST and by Georges
Quénot under the Quaero program.

3.1 System task

The semantic indexing (SIN) task was as follows.
Given a standard set of shot boundaries for the se-
mantic indexing test collection and a list of concept
definitions, participants were asked to return for each
concept in the full set of concepts, at most the top
2 000 video shots from the standard set, ranked ac-
cording to the highest possibility of detecting the
presence of the concept. The presence of each concept
was assumed to be binary, i.e., it was either present

or absent in the given standard video shot. If the con-
cept was true for some frame (sequence) within the
shot, then it was true for the shot. This is a simplifi-
cation adopted for the benefits it afforded in pooling
of results and approximating the basis for calculating
recall. A pilot extension to the task in 2012 was the
addition of a paired-concepts topics where the goal
was to detect the presence of a pair of concepts that
are visible in the video shot at the same time.

Three novelties were introduced as pilot extensions
to the participants in 2013:

• Measurement of system progress for a fixed set of
concepts and independent of the test data, across
3 years (2013-2015)

• To offer a new, optional system output in con-
cept pairs to indicate the temporal sequence in
which the two concepts occur in the video shot

• To offer a new, optional “localization” subtask
with the goal of localizing 10 detected concepts
inside the I-Frames of the video shots

Five hundred concepts were selected for the
TRECVID 2011 semantic indexing task. In making
this selection, the organizers drew from the 130 used
in TRECVID 2010, the 374 selected by CU/Vireo
for which there exist annotations on TRECVID 2005
data, and some from the LSCOM ontology. From
these 500 concepts, 346 concepts were selected for
the full task in 2011 as those for which there exist at
least 4 positive samples in the final annotation. For
2013 the same list of 500 concepts has been used as a
starting point for selecting the 60 single concepts for
which participants must submit results in the main
task and the 10 concept pairs in the paired concept
task. The 10 concepts for localization will be a subset
of the main task concepts.

This year the evaluated paired-concepts were as fol-
lows, listed by concept number:

911 Telephones + Girl
912 Kitchen + Boy
913 Flags + Boat ship
914 Boat ship + Bridges
915 Quadruped + Hand
916 Motorcycle + Bus
917 Chair + George w Bush
918 Flowers + Animal
919 Explosion Fire + Dancing
920 Government Leader + Flags

In 2013 the task will again support experiments
using the “no annotation” version of the tasks: the
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idea is to promote the development of methods that
permit the indexing of concepts in video shots using
only data from the web or archives without the need
of additional annotations. The training data could
for instance consist of images retrieved by a general
purpose search engine (e.g. Google) using only the
concept name and/or definition with only automatic
processing of the returned images. This will again be
implemented by using additional categories for the
training types besides the A to D ones (see below).

Four types of submissions are considered: “main”
in which participants submitted results for 60 single
concepts, “loc” in which main task participants sub-
mitted localization results for 10 concepts drawn from
the 60 main concepts, “progress” in which partici-
pants submitted independent results for all and only
the 60 main task concepts but against the IACC.2.A,
IACC.2.B, and IACC.2.C data, and finally the “pair”
submissions in which participants submitted results
for 10 concept pairs and optionally, information on
the time sequence in which the two concepts appears
may be submitted.

TRECVID evaluated 38 of the 60 submitted sin-
gle concept results and all of the 10 submitted paired
concept results. Fifteen single concepts and 5 paired
concepts were judged at NIST. Twenty-three single
concepts and 5 paired concepts were judged under
the Quaero program in France. NIST judged the
localization submissions for 10 of the 38 single con-
cepts. No time sequence results for the paired con-
cepts were submitted. The 60 single concepts are
listed below. Those that were evaluated in the main
task are marked with an asterisk. The subset evalu-
ated for localization are marked with “>”.

3 * > Airplane
5 * Anchorperson
6 * Animal
9 Basketball
10 * Beach
13 Bicycling
15 * > Boat Ship
16 * Boy
17 * > Bridges
19 * > Bus
22 Car Racing
25 * > Chair
27 Cheering
29 Classroom
31 * Computers
38 * Dancing
41 Demonstration Or Protest

49 * Explosion Fire
52 * Female-Human-Face-Closeup
53 * Flowers
54 * Girl
56 * Government-Leader
57 Greeting
59 * > Hand
63 Highway
71 * Instrumental Musician
72 * Kitchen
77 Meeting
80 * > Motorcycle
83 * News Studio
84 Nighttime
85 Office
86 * Old People
89 * People Marching
95 Press Conference
97 Reporters
99 Roadway Junction
100 * Running
105 * Singing
107 * Sitting Down
112 Stadium
115 Swimming
117 * > Telephones
120 * Throwing
163 * Baby
227 * Door Opening
254 * Fields
261 * > Flags
267 * Forest
274 * George Bush
297 Hill
321 Lakes
342 * Military Airplane
359 Oceans
392 * > Quadruped
431 * Skating
434 Skier
440 Soldiers
454 * Studio With Anchorperson
478 Traffic

Concepts were defined in terms which a human
judge could understand. Some participating groups
made their feature detection output available to par-
ticipants in the search task which really helped in
the search task and contributed to the collaborative
nature of TRECVID.

The fuller concept definitions provided to sys-
tem developers and NIST assessors are listed
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with the detailed semantic indexing runs at the
back of the workshop notebook and on the
webpage: http://www-nlpir.nist.gov/projects/

tv2012/tv11.sin.500.concepts ann v2.xls

Work at Northeastern University (Yilmaz &
Aslam, 2006) has resulted in methods for estimat-
ing standard system performance measures using rel-
atively small samples of the usual judgment sets so
that larger numbers of features can be evaluated us-
ing the same amount of judging effort. Tests on past
data showed the new measure (inferred average pre-
cision) to be a good estimator of average precision
(Over, Ianeva, Kraaij, & Smeaton, 2006). This year
mean extended inferred average precision (mean xin-
fAP) was used which permits sampling density to
vary (Yilmaz, Kanoulas, & Aslam, 2008). This al-
lowed the evaluation to be more sensitive to shots re-
turned below the lowest rank (1̃00) previously pooled
and judged. It also allowed adjustment of the sam-
pling density to be greater among the highest ranked
items that contribute more average precision than
those ranked lower.

3.2 Data

The IACC.2.A collection was used for testing. It con-
tained 112 677 shots. IACC.2.B-C collections used in
the “Progress” task contained 107 806 and 113 467
shots. Automatic Speech Recognition (ASR) output
on IACC.2 videos was provided by LIMSI (Gauvain,
Lamel, & Adda, 2002) and a community annotation
of concepts was organized by LIG and LIF groups
(Ayache & Quénot, 2008).

3.3 Evaluation

Each group was allowed to submit up to 4 prioritized
main runs and two additional if they are “no anno-
tation” runs, one localization run was allowed with
each main submission, up to 2 progress runs was all-
wed on each of the 2 progress datasets, and up to two
paired-concept runs. Each participant in the paired
concept task must submit a baseline run which just
combines for each pair the output of group’s two in-
dependent single-concept detectors. In fact 26 groups
submitted a total of 98 main runs, 9 localization runs,
18 progress runs, and 21 paired-concept runs. No
teams participated in the temporal sequence subtask
for concept pairs.

Main and paired concepts

For each concept in the main and paired concept
tasks, pools were created and randomly sampled as
follows. The top pool sampled 100 % of shots ranked
1-200 across all submissions. The bottom pool sam-
pled 6.7 % of ranked 201-2000 and not already in-
cluded in a pool. Human judges (assessors) were pre-
sented with the pools - one assessor per concept -
and they judged each shot by watching the associated
video and listening to the audio. Once the assessor
completed judging for a topic, he or she was asked
to rejudge all clips submitted by at least 10 runs at
ranks 1 to 200 and was judged as not containing the
concept by the assessor. In all, 336 683 were judged.
2 018 182 shots fell into the unjudged part of the over-
all samples.

Localization

For the localization subtask judging proceeded as fol-
lows. For each shot found to contain a concept in the
main task, a sequential 22 % subset of the included I-
Frames beginning at a randomly selected point within
the shot was selected and presented to an assessor.
The seletion of a sequence of images rather than a
random sample was intended to favor systems that
used the video context of each image to do the local-
ization rather than treating each image in isolation.
For each image the assessor was asked to decide first
if the frame contained the concept or not, and, if so,
to draw a rectangle on the image such that all of
the visible concept was included and as little else as
possible. Figure ?? shows the evaluation framework.
In accordance with the guidelines, if more than one
instance of the concept appeared in the image, the as-
sessor was told to pick just the most prominent one
and box it in. Assessors were told that in the case of
occluded concepts, they should include invisible but
implied parts only as a side effect of boxing all the
visible parts.

Early in the assesssment process it became clear
some additional guidelines were needed. Sometimes
in a series of sequential images the assessor might
know from context that a blurred area was in fact
the concept. In this case we instructed the assessor
to judge such an image as containing the concept and
box the blurry area.

As this was the first running of this task and as-
sessment, we planned a minimum of 5 assessor half-
days for each of the 10 topics to be judged. At NIST
we tried the task ourselves with the software we de-
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Figure 1: Concept Localization Evaluation Framework

veloped and based on our performance we estimated
each assessor could judge roughly 6000 images in the
time alloted.

The following table describes for each of the 10
localization concepts the number of shots judged to
contain the concept and the number of I-Frames com-
prised by those shots.

Concept Name... True shots I-Frames
3 Airplane 100 297

15 Boat Ship 479 2917
17 Bridges 140 884
19 Bus 148 1095
25 Chair 1298 20064
59 Hand... 1598 18290
80 Motorcycle 289 1846

117 Telephones 152 1348
261 Flags 480 5980
392 Quadruped 448 6641

The larger numbers of I-Frames to be judged for
concepts 25 and 59 within the time allotted caused
us to assign some of those images to assessors who
had not done the original shot judgments. Such addi-
tional assessors were told to make liberal judgments
about the (non)presence of the concept (not worry
about fringe cases) and focus on the localization. One
concept presented particular problems when assigned
for localization to multiple assessors.

Hand: A close-up view of one or more human

hands, where the hand is the primary

focus of the shot

While the definition of “a human hand” is relatively
clear, the notions of “close-up” and “primary focus”
are very fuzzy and invite differing judgments.

3.4 Measures

Main and paired concepts

The sample eval software, a tool implementing xin-
fAP, was used to calculate inferred recall, inferred
precision, inferred average precision, etc., for each re-
sult, given the sampling plan and a submitted run.
Since all runs provided results for all evaluated con-
cepts, runs can be compared in terms of the mean
inferred average precision across all evaluated single
concepts. The results also provide some information
about “within concept” performance.

Localization

Temporal and spatial localization were evaluated us-
ing precision and recall based on the judged items
at two levels - the frame and the pixel, respectively.
NIST then calculated an average for each of these
values for each concept and for each run. For each
shot that is judged to contain a concept, a subset of
the shot’s I-Frames was viewed and annotated to lo-
cate the pixels representing the concept. The set of
annotated I-Frames was then be used to evaluate the
localization for the I-Frames submitted by the sys-
tems.
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Figure 2: SIN: Histogram of shot frequencies by concept number

3.5 Results

Single Concepts

Performance varied greatly by concept. Figure 2
shows how many unique instances were found for
each tested concept. The inferred true positives
(TPs) of 12 concepts exceeded 1 % from the to-
tal tested shots. Top performing concepts were
“Hand”, “Chair”, ”Dancing”, “Girl”, ”Old People”,
”Singing”,“Instrumental Musician”,“AnchorPerson”,
”News Studio”, ”Female Human Face Closeup”, and
“Boy”.

On the other hand, features that had the
fewest TPs were “Airplane*”, “People Marching”,
“Sitting Down*”,“Military Airplane*”,
“Bridges*”, “Kitchen*”, “Bus”, “Govern-
ment Leader”,“Door Opening”, “Fields”, “Throw-
ing*”, “Baby*”,“George Bush”, “Skating”, “Forest”,
and “Telephones”. It is worth mentioning here that
there are 7 common concepts with TRECVID 2012
that share the low found TPs percentage. Those are
the ones listed above and end with a star “*”. It
is not very clear if systems are really struggling to
detect them or they are rare in the testing dataset
used.

The top performing concepts were more generic by
definition than the bottom performing ones which are
more specific in category, location or action such as
“sitting-down”, “Kitchen”, and “Baby”. In addition,
many of the low performing features are easily con-
fusable by another visually similar features such as

“Airplane”,“Military Airplane”.

Figure 3 shows the results of category A for the
main run submissions. Category A runs used only
IACC training data. The median score across all runs
was 0.128 while maximum score reached 0.321. Also,
the median baseline run score automatically gener-
ated by NIST is plotted on the graph with score 0.143.

Still category A runs were the most popular type
and achieve top recorded performances. Only 8 runs
from category E & F was submitted and achieved top
scores of 0.048 and 0.046 respectively.

Figure 4 shows the performance of the top 10
teams across the 38 features. Few concepts reflected
a medium spread between the scores of the top
10 such as feature “Anchorperson”, “Animal”,
“Hand”,“Instrumental-Musician”, “Quadruped”,
“Skating”,“Flags”,“Baby”,“Throwing”,“Dancing”,
“Computers”, and “Beach”. The spread in scores
may indicate that there is still room for further
improvement within used techniques. The majority
of the rest of the concepts had a tight spread of
scores among the top 10 which may indicate a small
variation in used techniques performance. In general,
the median scores ranged between 0.001 (feature
“Sitting down” and “Telephones”) and 0.54 (feature
“News-Studio”). As a general observation, feature
“Sitting down” had the minimum median score for
the last 3 years which demonstrates how difficult
this feature is for the systems to detect.

To test if there were significant differences between
the systems’ performance, we applied a randomiza-
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Figure 3: xinfAP by run (cat. A)

Figure 4: Top 10 runs (xinfAP) by concept number
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Figure 5: Significant differences among top A-category full runs

tion test (Manly, 1997) on the top 10 runs for training
category A as shown in Figure 5. The figure indicates
the order by which the runs are significant according
to the randomization test. Different levels of indenta-
tion signifies a significant difference according to the
test. Runs at the same level of indentation are indis-
tinguishable in terms of the test. In this test the top
ranked run was significantly better than other runs.

Concept-Pairs

Figure 6 shows the performance for the subtask of
concept-pairs. In general the highest number of
true positives (hits) came from the concepts “Flag
+ Boat Ship” and fewest hits came from “Flowers +
Animal”. Compared to last year, hits are much less
this year reaching maximum little above 100. It is
not clear yet if this is due to that those concepts are
rare in the testing set or systems are still learning how
to combine the results of different independent detec-
tors and fuse their results. One major issue is that
some systems learn the presense of certain concepts
using different features that can exist in a positive
concept-pair shot. For example a system can learn
the presence of a crowd of people when trained on a
set of shots in a stadium setting and therefore can
miss concept-pair shot if it asked to return a shot
that contains a crowd of people AND a street. And

Figure 6: Concept-Pairs: Histogram of shot frequen-
cies by concept number
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Figure 8: Significant differences among top A-
category concept-pairs runs

thus we believe that for concept pairs learning, sys-
tems have to learn in a way that is less sensitive to
the context of the surrounding visual appearance of
non-relevant features.

Figure 7 show the range of scores for concept-
pairs runs. The top run achieved score 0.164 (higher
than last year) while the median score was 0.1125.
This year systems were required to submit a baseline
run which just combines for each pair the output of
the group’s two independent single-concept detectors.
The goal was to achieve better scores in their other
submitted regular runs. In fact most systems submit-
ted a baseline run but not all. And among those who
submitted we found that 3 teams had baseline runs
that achieved better scores than regular runs while
only 2 teams had all their regular runs better than
the baseline. This again confirms that it is harder for
systems to learn single concepts independently from
other relevant context features and use their output
for detecting paired concepts. Figures 8 and 9 show
the randomization test on concept-pair runs.

Concept Localization

Figure 10 show the mean precision, recall and fscore
of the returned I-frames by all runs across all 10 con-
cepts. All runs reported much higher recall (reaching

Figure 9: Significant differences among top A-
category concept-pairs runs (continued)

a maximum above 50 %) than precision or fscore ex-
cept 1 team (FTRDBJ) which had close scores for
the 3 measures. Lower precision scores (maximum
20 %) indicate that most runs returned a lot of non-
relevant I-frames that didn’t contain the concept. On
the other hand figure 11 shows the same measure
by run for spatial localization (correctly returning a
bounding box around the concept). Here scores were
much lower than the temporal measures and reach-
ing hardly above 10 % precision. This indicates that
finding the best bounding box was a much harder
problem than just returning a correct I-frame.

The average true positive I-frames vs average false
positive I-frames for each run can be shown in Figure
12. For many runs the average False positive I-frames
are almost double the average true positive I-frames
even for top runs. Systems that tried to be more
conservative in reporting I-frames didn’t gain much in
terms of fscore measure. There is a big challenge for
systems to try to balance the accuracy of the returned
I-frames while still achieving high fscore measure.

The F-score performance by concept is shown in
figures 13 and 14 for temporal and spatial respec-
tively across all runs. In general temporal scores are
higher than spatial scores with the concept “Flags”
reporting maximum score of 0.6 for temporal localiza-
tion and about 0.3 for spatial localization. We notice
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Figure 7: xinfAP by run (cat. A) - concept-pairs

Figure 10: Concept Localization: Temporal localization results by run
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Figure 11: Concept Localization: Spatial localization results by run

Figure 12: Concept Localization: TP vs FP I-frames by run
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Figure 13: Concept Localization: Temporal localiza-
tion by concept

Figure 14: Concept Localization: Spatial localization
by concept

Figure 15: Concept Localization: temporal precision
and recall per concept for all teams

very low maximum scores for 4 concepts in both local-
ization types: “Airplane”, “Bridges”, “Bus”, ”tele-
phones” compared to the other 6 concepts which
scores are spread among the 9 submitted runs by at
least 0.1.

To visualize the distribution of recall vs precision
for both localization types we plotted the results of
recall and precision for each submitted concept and
run in Figures 15 and 16 for temporal and spatial lo-
calization respectively. We can see in Figure 15 that
the majority of systems submitted a lot of non-target
I-frames achieving high recall and low precision while
very few found a balance. An interesting observation
in Figure 16 shows that systems are good in sub-
mitting an accurate approximate bounding box size
which overlaps with the ground truth bounding box
coordinates. This is indicated by the cloud of points
in the direction of positive correlation between the
precision and recall for spatial localization.

Finally, to summarize some observations after run-
ning the SIN task in 2013 we can conclude that train-
ing type A is dominating the submissions while train-
ing type E & F still very few with zero submissions for
types B, C, & D. Number of unique shots found is less
than 2012. Concept-pairs subtask is very challeng-
ing for systems with baseline runs in many cases are
still better than regular runs. In addition, no teams
submitted any results for feature sequence in the
concept-pairs runs. For localization subtask, finding
the I-frames only was easier than finding the correct
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Figure 16: Concept Localization: spatial precision
and recall per concept for all teams

bounding box around the concepts in the I-frames
and systems can find a good approximate bounding
box size that overlaps with the ground truth box but
still not with high precision.

In regard to site experiments, the following is a
non-exhaustive summary of the main highlights in
the submitted papers: There is a focus on robustness
and merging many different feature representations.
Some sites applied spatial pyramids, improved bag of
word approaches, Fisher/super-vectors, VLADs (vec-
tor of locally aggregated descriptors), and VLATs
(Vectors of Locally Aggregated Tensors). There was
some experiments in audio analysis, consideration of
scalability issues, improved rescoring methods and
use of semantic features. Also, there is work on the
kernel size parameter of the SVM-RBF kernel, no an-
notation conditions included use of socially tagged
videos or images and develop strategies for positive
example selection. Few sites started exploring the
deep convolutional neural networks (deep learning).

For detailed information about each participat-
ing research team experiments, results and their
conclusions, please see the workshop notebook pa-
pers: www-nlpir.nist.gov/projects/tvpubs/tv

.pubs.org.html.

4 Instance search

An important need in many situations involving
video collections (archive video search/reuse, per-

sonal video organization/search, surveillance, law en-
forcement, protection of brand/logo use) is to find
more video segments of a certain specific person, ob-
ject, or place, given one or more visual examples of
the specific item. The instance search task seeks to
address some of these needs.

4.1 Data

The task was run for three years starting in 2010
to explore task definition and evaluation issues using
data of three sorts: Sound and Vision (2010), BBC
rushes (2011), and Flickr (2012). Finding realistic
test data, which contains sufficient recurrences of var-
ious specific objects/persons/locations under varying
conditions has been difficult.

In 2013 the task embarked on what will likely be a
multi-year effort using 464 h of the BBC soap opera
EastEnders. Two hundred forty-four weekly “om-
nibus” files were divided by the BBC into 471 523
shots to be used as the unit of retrieval. The videos
present a “small world” with a slowly changing set
of recurring people (several dozen), locales (homes,
workplaces, pubs, cafes, restaurants, open-air mar-
ket, clubs, etc.), objects (clothes, cars, household
goods, personal possessions, pets, etc.), and views
(various camera positions, times of year, times of
day).

4.2 System task

The instance search task for the systems was as fol-
lows. Given a collection of test videos, a master shot
reference, and a collection of queries that delimit a
person, object, or place entity in some example video,
locate for each query the 1000 shots most likely to
contain a recognizable instance of the entity. Each
query consisted of a set of

• a brief phrase identifying the target of the search

• 4 example frame images drawn at intervals from
videos containing the item of interest. For each
frame image:

– a binary mask of an inner region of interest
within the rectangle

• an indication of the target type taken from this
set of strings (OBJECT, PERSON)
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Topics

NIST viewed every 10th test video and developed a
list of recurring objects, people, and locations. Thirty
test queries (topics) were then created. Candidate
topic targets were chosen to exhibit various kinds of
variation, including:

• inherent - boundedness, size, rigidity, planarity,
mobility, ...

• locale - mutiplicity, variability, complexity, ...

• camera view - distance, angle, lighting, ...

Half of the topics looked for stationary objects and
half for non-stationary objects or people. Of the four
topics looking for people, two concerned named char-
acters whose names were provided and two concerned
unnamed extras. The guidelines for the task allowed
the use of metadata assembled by the EastEnders fan
community as long as this use was documents by par-
ticipants and shared with other teams.

4.3 Evaluation, Measures

Each group was allowed to submit up to 4 runs and
in fact 22 groups submitted 65 automatic and 9 in-
teractive runs (using only the first 24 topics). Each
interactive search was limited to 15 min.

Shots from which topic example images were taken,
were filtered from all submissions. Then the submis-
sions were pooled and divided into strata based on
the rank of the result items. For a given topic, the
submissions for that topic were judged by a NIST
assessor who played each submitted shot and deter-
mined if the topic target was present. The assessor
started with the highest ranked stratum and worked
his/her way down until too few relevant shots were
being found or time ran out. Table 3 presents in-
formation about the pooling and judging. All topic
pools were judged down to at least rank 120 (on av-
erage 253, maximum 460) resulting in 209 302 judged
shots (in 600 person-hours). 13 907 clips (on average
463.6 per topic) contained the topic target (6.6 %).

This task was treated as a form of search and
evaluated accordingly with average precision for each
query in each run and per-run mean average precision
over all queries. While speed and location accuracy
were also definitely of interest here, of these two, only
speed was measured in the pilot.

Figure 17: INS: Boxplot of automatic runs - average
precision by topic

4.4 Results

Figure 17 shows the distribution of automatic run
scores (average precision) by topic as a boxplot. Top-
ics are sorted by maximum score with the best per-
forming topic at the left. Median scores vary from
about 0.3 down to almost 0.0. Per topic variance
varies as well with the largest values being associ-
ated with the topics that have the best performance.
Many factors might be expected to affect topic diffi-
culty. All things being equal one might expect targets
with less variability to be easier to find. Rigid, sta-
tionary objects would fall into that category. In fact
for the automatic runs topics with targets that are
stationary, rigid objects make up 8 of the 15 with
the best scores, while such targets make up only 3 of
the bottom 15. Figure 18 documents the raw perfor-
mance of the top 10 automatic runs and the results
of a randomization test (Manly, 1997) some light on
which differences in the ranking are likely to be sta-
tistically significant (p < 0.05). The right angled
bracket indicates a significant difference.

In Figure 19, a boxplot of the interactive runs’ per-
formance, the best median is actually slightly below
that for the automatic runs. Topics with targets that
are stationary, rigid objects make up 5 of the 12 with
the best scores, but such targets also make up 4 of the
bottom 12 topics. Figure 20 documents the raw per-
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Table 3: Instance search pooling and judging statistics

Topic

number

Total

submitted

Unique

submitted

%

total

that

were

unique

Max.

result

depth

pooled

Number

judged

%

unique

that

were

judged

Number

relevant

%

judged

that

were

relevant
9069 66 478 20 269 30.5 460 9593 47.3 2290 23.9

9070 65 452 28 565 43.6 240 7184 25.1 735 10.2

9071 65 549 27 920 42.6 180 5594 20.0 31 0.6

9072 65 915 29 988 45.5 300 9004 30.0 261 2.9

9073 65 573 27 991 42.7 280 7366 26.3 673 9.1

9074 65 139 32 323 49.6 180 6563 20.3 97 1.5

9075 65 473 33 608 51.3 160 5742 17.1 78 1.4

9076 65 745 26 867 40.9 360 10066 37.5 825 8.2

9077 65 326 34 641 53.0 120 4777 13.8 31 0.6

9078 66 231 24 029 36.3 400 8346 34.7 876 10.5

9079 64 580 25 513 39.5 240 6440 25.2 385 6.0

9080 65 236 30 133 46.2 220 7021 23.3 250 3.6

9081 64 489 25 568 39.6 240 7202 28.2 211 2.9

9082 64 721 31 225 48.2 160 5298 17.0 61 1.2

9083 65 336 30 016 45.9 300 9563 31.9 115 1.2

9084 65 711 29 419 44.8 180 5730 19.5 28 0.5

9085 65 966 26 109 39.6 300 6708 25.7 440 6.6

9086 65 837 21 813 33.1 280 5370 24.6 759 14.1

9087 64 785 30 486 47.1 180 5703 18.7 25 0.4

9088 66 664 26 852 40.3 340 8643 32.2 1605 18.6

9089 65 423 27 553 42.1 280 7790 28.3 1265 16.2

9090 64 680 24 525 37.9 200 4948 20.2 363 7.3

9091 65 465 24 470 37.4 320 7598 31.1 761 10.0

9092 66 069 22 767 34.5 260 5972 26.2 164 2.7

9093 62 247 31 191 50.1 200 5896 18.9 70 1.2

9094 61 922 27 120 43.8 240 6789 25.0 163 2.4

9095 62 617 28 770 45.9 240 7605 26.4 439 5.8

9096 62 017 30 118 48.6 220 6637 22.0 161 2.4

9097 62 571 25 486 40.7 280 7412 29.1 251 3.4

9098 62 749 29 301 46.7 240 6742 23.0 383 5.7
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Figure 18: INS: top automatic run rankings with randomization tests results

Figure 20: INS: top interactive run rankings with randomization tests results

18



Figure 19: INS: Boxplot of interactive runs - average
precision by topic

formance of the top interactive runs and the results
of a randomization test (Manly, 1997) to shed some
light on which differences in the ranking are likely
to be statistically significant (p < 0.05). The right
angled bracket indicates a significant difference.

The relationship between the two main measures
- effectiveness (mean inferred average precision) and
mean elapsed topic processing time is depicted in Fig-
ure 21. Higher effectiveness does not require more
processing time. The relationship between maximum
average precision for a topic and the number of true
positives for that topic found in the test collection can
be seen in Figure 22. Although there appears to be
some tendency for some topics with larger numbers
of true positives to get higher scores, the relationship
is not consistent.

For detailed results please see the online workshop
notebook (TV13Notebook, 2013).

Regarding approaches taken, systems typically pro-
cessed the test video to choose keyframes and then
analyzed each keyframe using a form of local scale-
invariant feature transforms (SIFT) together with
global features. Matching of the topic to the test clips
was carried out using object recognition based on key-
point matches, bag-of-visual-words (BovW) cluster-
ing of keypoints to a codebook with similarity func-
tion, and spatial verification. Fusion of scores fol-

Figure 21: INS: average elapsed time versus mean
average precision

Figure 22: INS: true positives per topic versus maxi-
mum average precision
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lowed.

Issues explored included how to exploit the fo-
cus versus background of the topic example im-
ages (University of Amsterdam, VIREO:City Uni-
versity of Hong Kong), the effect of adding extra
sample images from Internet sources (AXES:Access
to Multimedia), and different levels of fusion, com-
bining different feature types (local, global)(CEA,
University of Sheffield, Beijing University of Posts
and Telecommunications), Vlad quantization (AXES,
ITI-CERTH:Informatics and Telematcis Institute
Greece), combining multiple keypoint detectors and
multiple descriptors (NII:National Institute of In-
formatics Japan, NTT:Nippon Telegraph and Tele-
phone). The AXES team experimented with find-
ing additional faces using Google image search to en-
hance the training data. Orange Labs Beijing incor-
porated a face classifier which helped with some top-
ics at a cost for processing time.

Various groups experimented with system architec-
tures and efficiency. TNO used Hadoop to speed
up their searches. Johanneum Research (JRS) em-
ployed a graphic processing unit (GPU) for object
search. The Multimedia and Intelligent Computing
Lab at Tongji University team implemented hybrid
parallelization using GPUs and map/reduce. A num-
ber of systems incorporated techniques from text in-
formation retrieval including inverted files for fast
lookup, use of collection statistics (BM25 weighting
enhancements NTT-NII), and pseudo-relevance feed-
back (Peking University, NTT-NII, IAD-DCU:Dublin
City University.

Interactive (human-in-the-loop) experiments were
carried out by several teams. For the Orange Labs
Beijing team their interactive runs outperformed
their automatic runs (due to multiple feedback cy-
cles). Similarly for the Peking University team. The
AXES group looked at fusion of query-time subsys-
tems (closed captions, Google image visual model,
face recognition, object/location retrieval and their
experiments focused on different user types. Three
interactive runs from ITI-CERTH found Vlad quan-
tization outperformed BovW and that their user in-
terface benefited from a scene segmentation module
that linked related shots.

For detailed information about the experiments
each participating research team performed and
their conclusions, please see the workshop notebook
papers: www-nlpir.nist.gov/projects/tvpubs/tv
.pubs.org.html.

5 Multimedia event detection

The 2013 Multimedia Event Detection (MED) eval-
uation was the third evaluation of technologies that
search multimedia video clips for complex events of
interest to a user. The 2013 included many important
changes:

• Events tested: 10 new events were added for the
Ad-Hoc evaluation.

• Evaluation conditions: the first Ad-Hoc event
evaluation task was supported which tested sys-
tems on an additional 10 new events.

• A new 0-video exemplar event training condi-
tion was introduced and the maximum number
of event training exemplars was reduced to 100
from 130.

• Developers were asked to build a single best sys-
tem and then asked to run a prescribed set con-
trastive conditions.

• Indexing collections: the MED Progress Collec-
tion, which is 3722 h in duration, was used again
this year as planned but a 1/3 subset (referred to
as PROGSub) was introduced as a smaller test
collection for new participants.

• The primary performance metric was changed to
Mean Average Precision.

An event for MED:

• is a complex activity occurring at a specific place
and time;

• involves people interacting with other people
and/or objects;

• consists of a number of human actions, processes,
and activities that are loosely or tightly orga-
nized and that have significant temporal and se-
mantic relationships to the overarching activity;

• is directly observable.

A user searching for events in multimedia mate-
rial may be interested in a wide variety of potential
events. Since it is an intractable task to build special
purpose detectors for each event a priori, a technol-
ogy is needed that can take as input a human-centric
definition of an event that developers (and eventually
systems) can use to build a search query.

The events for MED were defined via an event kit
which consisted of:
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• An event name which is an mnemonic title for
the event.

• An event definition which is a textual definition
of the event.

• An event explication which is a textual listing of
some attributes that are often indicative of an
event instance. The evidential description pro-
vides a notion of some potential types of visual
and acoustic evidence indicating the event’s ex-
istence but it is not an exhaustive list nor is it
to be interpreted as required evidence.

• An evidential description which is a textual list-
ing of the attributes that are indicative of an
event instance. The evidential description pro-
vides a notion of some potential types of visual
and acoustic evidence indicating the event’s ex-
istence but it is not an exhaustive list nor is it
to be interpreted as required evidence.

• A set of illustrative video examples containing
either an instance of the event or content ”re-
lated” to the event. The examples are illustra-
tive in the sense they help form the definition of
the event but they do not demonstrate all the
inherent variability or potential realizations.

Developers built Pre-Specified event systems where
knowledge of the event(s) was taken into account dur-
ing generation of the metadata store for the test col-
lection. In 2013, the initial Ad-Hoc event task was
conducted where the metadata store generation was
completed before the events where revealed.

5.1 Data

A development and evaluation collection of Internet
multimedia (i.e., video clips containing both audio
and video streams) clips was provided to MED par-
ticipants. The data, which was collected and dis-
tributed by the Linguistic Data Consortium, consists
of publicly available, user-generated content posted
to the various Internet video hosting sites. Instances
of the events were collected by specifically searching
for target events using text-based Internet search en-
gines. All video data was reviewed to protect privacy,
remove offensive material, etc., prior to inclusion in
the corpus.

Video clips were provided in MPEG-4 formatted
files. The video was encoded to the H.264 standard.
The audio was encoded using MPEG-4’s Advanced
Audio Coding (AAC) standard.

Table 4: MED ’13 Pre-Specified Events

———— Testing Events ————

—– MED’11 event re-test

Birthday Party

Changing a vehicle tire

Flash mob gathering

Getting a vehicle unstuck

Grooming an animal

Making a sandwich

Parade

Parkour

Repairing an appliance

Working on a sewing project

—– MED’12 event re-test

Attempting a bike trick

Cleaning an appliance

Dog show

Giving directions to a location

Marriage proposal

Renovating a home

Rock climbing

Town hall meeting

Winning a race without a vehicle

Working on a metal crafts project

MED participants were provided the data as spec-
ified in the HAVIC data section of this paper. The
MED ’13 Pre-Specified event names are listed in Ta-
ble 4 and Table 5 lists the MED ’13 Ad-Hoc Events.

5.2 System task

Sites submitted MED system outputs testing their
systems on the following dimensions:

• Events: either all 20 Pre-Specified events (PS13)
and/or all 10 Ad-Hoc events (AH13).

• Subsystems: a single full system (FullSys)
and up to 4 reduced input systems that in-
cluded: Optical Character Recognition (OCR)
only, Automatic Speech Recognition (ASRSys)
only, Non-OCR visual (VisualSys) only, Non-
ASR audio (AudioSys) only.

• Test collection: either the full Progress collection
(PROGFull) or the 1/3 subset of the Progress
collection (PROGSub).

• Event exemplar training: 100 Ex (100 positive
and 50 miss clips), 10 Ex (10 positive and 10 miss
clips), and 0 Ex (0 positive and 0 miss clips).
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Table 5: MED ’13 Ad-Hoc Events

———— Testing Events ————

Beekeeping

Wedding shower

Non-motorized vehicle repair

Fixing musical instrument

Horse riding competition

Felling a tree

Parking a vehicle

Playing fetch

Tailgating

Tuning musical instrument

Full participation would mean teams would sub-
mit 30 runs, (5 subsystems * 2 event sets * 3 event
exemplar conditions).

For each event search a system generates:

• A Score for each search collection clip: A proba-
bility value between 0 (low) and 1 (high) repre-
senting the system’s confidence that the event is
present in the clip.

• A Detection Threshold for the event: A proba-
bility value between 0 and 1 - an estimation of
the detection score at or above which the system
will assert that the event is detected in the clip.

• The event agent execution time: The number
of seconds used to search for the event in the
metadata store.

System developers also reported the hardware com-
ponents used and computation times of the metadata
generation, event query generation, and event search
modules as well as the metadata store size.

Submission performance was computed using the
Framework for Detection Evaluation (F4DE) toolkit.

5.3 Evaluation, measures

System output will be evaluated by how well the
system retrieves and detects MED events in evalu-
ation search video metadata and by the computing
resources used to do so. The determination of correct
detection was at the clip level, i.e. systems will pro-
vide a response for each clip in the evaluation search
video set. Participants must process each event inde-
pendently in order to ensure each event was be tested
independently.

The primary evaluation measures for performance
will be Mean Average Precision.

There are three primary measures for computa-
tional speed expressed as real-time factors. Real-time
factor (RT) is the total processing time divided by the
number of hours of video in the test collection. The
three aspects computed were: (1) Metadata Genera-
tion Processing Speed, (2) Event Query Generation
Processing Speed, and (3) Event Search Processing
Speed.

5.4 Results

18 teams participated in the MED ’13 evaluation, 6
teams were new. All teams participated in the Pre-
Specified (PS), 100 Exemplar (100Ex) test processing
all 20 events. Sixteen teams participated in the Ad-
Hoc (AH) task. Three teams chose to process the
PROGSub Subset.

The MED13 evaluation re-used the MED Progress
Evaluation collection. Since the Progress set will be
used through 2015 MED evaluations, protecting the
statistic of the Progress set is of the utmost impor-
tance, NIST reported only Mean Average Precision
to prevent revealing statistics of the Progress set for
each run.

Table 6 presents the MAP (averaged over events)
for the Pre-Specified event and Ad-Hoc task sub-
missions for all training exemplar conditions and
system/sub-systems. The two box plots in Figure 23
shows the same data and illustrates many findings.

First, the range of MAPs for Pre-Specified vs. Ad-
Hoc events were surprisingly similar despite the dif-
ference in event population and evaluated systems.
For the required PS,100Ex condition, Full system
(FullSys) subsystems, the MAPs ranged from 0.2 %
to 34.6 % with a median of 23.9 % across teams. For
the AH, 100Ex, FullSys runs, the MAPs ranged from
0.2 % to 40.7 % with a median of 24.4 % across teams.

Second, systems were able to improve performance
using additional event exemplars. There was a 330
% and 130 % relative median MAP improvement go-
ing from 0Ex to 10Ex and 10Ex to 100Ex runs re-
spectively for the PS-FullSys runs. For the AH runs,
there was a larger relative improvement of median
MAPs between 0Ex and 10Ex runs of 946 % whereas
a lower relative improvement (79 %) between 10Ex
and 100Ex runs. The relative difference between the
PS vs. AH for the 0Ex to 10Ex change in perfor-
mance, tracks the lower median MAP scores for AH,
0Ex runs.
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Third, the MAPs for the Visual subsystems were
closer to the FullSys runs indicating systems made
most use of their system’s visual processing compo-
nents to perform MED. The visual system alone did
not account for all the performance. The Audio sub-
system, and to a lesser degree the ASR and OCR
subsystems, contributed as well.

Participants were asked to report three runtimes so
that three speeds could be computed. The speeds are:
(1) Metadata Generation Processing Speed (MGPS),
(2) Event Query Generation Processing Speed, and
(3) Event Search Processing Speed.

Figure 24 presents two measurements of metadata
generation speeds measured in multiples of realtime
of video files). Figure 24 graph A shows the MGPS
for the Search Collection for 18 teams (though not
all teams provided measurements for all subsystems).
Since the system populations are unbalanced, the
median speeds are a more reasonable statistics to
analyze than the mean. As expected, RTs for the
FullSys and VisualSys subsystems that used exem-
plar training (100Ex and 10EX) required the most
runtime ranging from 0.04 to 0.15 median RT. The
median RTs for other subsystem/Ex combinations
ranged from 0.004 for the Audio, 0Ex condition to
0.052 for the ASRSys, 100Ex condition.

Figure 24 graph B shows the Event Query Gen-
eration Processing speed based on the metadata ex-
traction speeds on the Event Background Collection
for reporting teams. In general, the speeds for meta-
data generation on the event background data were
slower than for the search collection. This is expected
because teams were instructed to use a Commercial
Off-the-Shelf PC to perform Event Query computa-
tion. The general trends with regard to subsystems
and exemplar training conditions are analogous to the
metadata generation speed for the search collection.

Figure 25 shows the Event Search Processing
speeds for the Pre-Specified and Ad-Hoc events. The
speeds presented here are the event-averaged speeds
for the reporting teams. Median search execution
RT speeds are similar for both Pre-Specified and Ad-
Hoc events. For the pre-specified events, the slowest
median search speed was 1.30x10−3 and for the Full-
Sys/100Ex condition while the fastest was 9.32x10−6

for the OCRSys/0Ex condition.

There is evidence of improvement between the
MED ’12 and MED ’13 evaluation. Six teams, (BB-
NVISER, CMU, GENIE, IBMCU, Sesame, SRIAU-
RORA), participated in the Pre-Specified, 10Ex task
which was the identical test with respect to the event

training condition and test videos. The relative MAP
improvements were 141 %, 37 %, 84 %, -46 %, 41 %,
and 22 %.

In summary, 18 teams participated in the MED
’13 evaluation. All teams participated in the Pre-
Specified (PS), 100 Exemplar (100Ex) test process-
ing all 20 events. 16 teams participated in the Ad-
Hoc (AH) task. 3 teams chose to process the PROG-
Sub Subset. The division of the types of information
sources brought to bear for the systems show that by
far, the VisualSys content alone provided the major-
ity of evidence to detect events but that the other
components, non-ASR Audio, ASR, and OCR, pro-
vided additional evidence for detection. There is evi-
dence of improvement for five the six teams that par-
ticipated in matching evaluation conditions between
MED ’12 and MED ’13.

TRECVID ’14 evaluation will include the MED
Track. Proposed changes include the introduction
of 10 new Ad-Hoc events, support for a pseudo-
relevance feedback evaluation condition, and intro-
duce a larger test collection.

6 Multimedia event recounting

The 2013 Multimedia Event Recounting (MER) eval-
uation was the second evaluation of technologies that
recount the multimedia video events detected by
MED systems.

In more detail, the purpose, of the 2013 Multime-
dia Event Recounting (MER) track, was to stimu-
late the development of technologies that state the
important evidence that led a Multimedia Event De-
tection (MED) system to decide that a multimedia
clip contains an instance of a specific event and to al-
low human users to rapidly and accurately find clips
of interest via the recountings. The 2013 TRECVID
MER evaluation assessed just the recounting of the
evidence.

The 2013 evaluation of MER consisted of three
metrics, described briefly here and in more detail
later. The first, Percent Recounting Review Time,
is the total time for a judge to assess the recounting,
divided by the total duration of the clips to be as-
sessed. The second, Accuracy, is the fraction of the
clips where the recounting alone allowed the judge
to determine whether the clip contained an instance
of the event of interest. The third, Precision of the
Observation Text is the mean grade (across judges)
on a five-point scale of “A: Excellent” through “F:
Fails.” The choices on that five-point scale were as-
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Table 6: MED ’13 Mean Average Precisions for Pre-Specified Event and Ad-Hoc Event Systems
PROGAll PROGSub Only

MAP MAP
FullSys ASRSys AudioSys OCRSys VisualSys FullSys VisualSys

AH

100Ex

BBNVISER 35.9 % 8.4 % 15.4 % 5.1 % 27.2 %
CERTH-ITI 9.6 % 9.8 %

CMU 40.1 % 6.2 % 16.7 % 3.9 % 32.0 %
Genie 22.9 % 4.5 % 10.6 % 19.2 %

IBM-Columbia 3.2 % 0.2 % 3.1 %
INRIA-LEAR 40.7 % 0.9 % 12.6 % 1.1 % 33.5 %

MediaMill 28.7 % 6.0 % 27.3 %
NII 28.3 % 9.1 % 22.9 %

ORAND 4.4 % 4.4 %
PicSOM 0.7 % 0.2 % 0.7 %

SRIAURORA 27.4 % 4.3 % 10.2 % 4.6 % 23.3 %
Sesame 28.9 % 4.2 % 6.0 % 0.2 % 26.7 %
TNO 9.0 % 5.8 %

TokyoTechCanon 25.9 %
UMass 5.6 %

VisQMUL 0.2 % 0.2 % 0.2 %

10Ex

BBNVISER 16.8 % 4.3 % 6.0 % 2.2 % 12.9 %
CERTH-ITI 3.0 % 3.0 %

CMU 24.1 % 2.7 % 9.3 % 1.1 % 18.6 %
Genie 13.1 % 2.4 % 3.7 % 8.7 %

IBM-Columbia 1.7 % 0.2 % 1.8 %
MediaMill 16.1 % 2.7 % 15.5 %
PicSOM 2.3 % 0.2 % 2.4 %

SRIAURORA 16.6 % 4.3 % 5.6 % 4.6 % 11.8 %
Sesame 14.1 % 1.4 % 2.7 % 0.2 % 15.1 %

VisQMUL 0.2 % 0.2 % 0.4 %

0Ex

BBNVISER 8.9 % 2.6 % 0.6 % 3.1 % 5.7 %
CMU 10.8 % 3.1 % 0.2 % 3.0 % 5.7 %
Genie 0.5 % 0.5 % 0.5 % 1.3 %

IBM-Columbia 1.3 % 0.2 % 1.6 %
SRIAURORA 1.5 % 4.3 % 0.2 % 4.6 % 0.6 %

Sesame 3.0 % 2.3 % 2.2 % 1.5 %
TNO 0.3 %

UMass 1.0 % 2.5 % 4.3 % 0.5 %
VisQMUL +0.2 % 0.2 % +0.2 %

PS

100Ex

BBNVISER 33.0 % 7.6 % 12.0 % 4.8 % 28.2 %
CERTH-ITI 10.5 % 10.2 %

CMU 30.6 % 7.8 % 12.6 % 3.1 % 26.4 %
Genie 23.3 % 0.6 % 7.8 % 19.9 %

IBM-Columbia 3.0 % 0.3 % 3.0 %
INRIA-LEAR 34.6 %

MediaMill 28.1 % 5.9 % 26.0 %
NII 28.2 % 7.1 % 24.9 %

ORAND 0.6 %
PicSOM 6.4 % 6.4 %

SRIAURORA 24.7 % 3.0 % 0.8 % 3.7 % 22.5 %
Sesame 27.6 % 4.0 % 5.9 % 0.2 % 26.1 %

SiegenKobeMuro 4.1 % 4.1 %
TNO 10.3 % 5.2 %

TokyoTechCanon 24.5 %
UMass 13.0 %
VIREO 26.5 % 25.5 %

VisQMUL 0.2 %

10Ex

BBNVISER 16.6 % 3.5 % 4.4 % 3.2 % 13.3 %
CERTH-ITI 3.0 % 3.0 %

CMU 12.6 % 2.0 % 4.7 % 0.8 % 11.2 %
Genie 10.4 % 0.3 % 2.6 % 10.3 %

IBM-Columbia 2.2 % 0.3 % 2.2 %
MediaMill 15.0 % 2.6 % 14.0 %
PicSOM 3.2 % 3.2 %

SRIAURORA 13.7 % 3.0 % 0.9 % 3.7 % 12.4 %
Sesame 10.3 % 1.4 % 2.6 % 0.2 % 11.6 %

VisQMUL 0.2 %

0Ex

BBNVISER 5.2 % 1.4 % 0.5 % 2.8 % 3.5 %
CMU 3.7 % 1.8 % 0.3 % 2.1 % 2.4 %
Genie 1.3 % 1.7 % 1.1 % 1.0 %

IBM-Columbia 1.6 % 0.2 % 1.8 %
SRIAURORA 7.0 % 3.0 % 0.2 % 3.7 % 6.5 %

Sesame 2.4 % 1.7 % 2.3 % 1.3 %
TNO 0.4 %

UMass 5.6 % 2.3 % 3.3 % 5.1 %
VisQMUL 0.2 %
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Figure 25: MED: Search speeds for the Pre-Specified and Ad-Hoc evens broken down by subsystem type
and training exemplar
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signed numeric values, so that the mean and other
statistics could be calculated.

Each event was explicitly defined by an Event Kit.
A clip that is positive for an event contains an in-
stance of that event.

Each event in this evaluation

• is a complex activity occurring at a specific place
and time;

• involves people interacting with other people
and/or objects;

• consists of a number of human actions, processes,
and activities that are loosely or tightly orga-
nized and that have significant temporal and se-
mantic relationships to the over-arching activity;
and

• is directly observable.

Participation in MER 2013 was open to all 2013
TRECVID MED participants whose system always
produced a recounting for each clip that their MED
system deemed to be positive (that is, identified as
being above their MED system’s decision threshold
for being positive).

Input data formats were as in existing HAVIC data.
MER output data formats used ASCII XML text.

NIST provided a rendering tool and a MER DTD
schema to be used to specify and validate system out-
put.

The systems recountings were evaluated by a panel
of judges. NIST created a MER Workstation to view
and judge the recountings, and NIST provided access
to that workstation to the MER participants and the
judges.

We are interested in recountings that state the evi-
dence in a way that human readers find easily under-
standable.

6.1 Data

The MER task drew from the same data as the MED
task. See the MED Data section for more informa-
tion.

6.2 System task

Given an event kit and a test video clip that the
team’s MED system deemed to contain an instance
of the event, the MER system was to produce a re-
counting summarizing the key evidence for the event
in the clip. Evidence means observations such as
scene/context, persons, animals, objects, activities,
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text, non-linguistic audio, and other evidence sup-
porting the detection of the event. Each observation
was associated with an indication of the system’s con-
fidence that the observation is correct and an indica-
tion of how important the system believes the obser-
vation to be. The system indicated, in the recount-
ing, the order in which the observations should be
presented to the user, so that a system could exploit
order of presentation to achieve its goals.

For each observation, the recounting was to include
a list of pointers to the evidence in the clip, indicating

• temporally, where in the clip the piece of evi-
dence occurs, and

• spatially, where in the frame the evidence occurs
(if visible evidence).

We refer to these pieces of evidence (excerpts from
the clip) as snippets. Snippets are described more
fully below.

In addition, the recounting was to include a list
of the source(s) of the observation, drawn from the
following list:

• video: (not involving OCR)

• visible text : (text via OCR)

• speech: (transcribed via ASR)

• non speech audio: (without ASR textual tran-
scription)

Systems produced an XML element for each ob-
servation, and that element included attributes that
gave the following information.

id a unique identifier that can be used in other XML
elements to associate elements, e.g., to associate
an object or person with an activity

description a textual statement of the observation
(For example, if the type is object, the description
might be red Toyota Camry.) The description
may be used to, for example, state only what
is observable (e.g., red Camry) or could, for ex-
ample, also include semantic inferences (e.g., the
getaway vehicle).

source(s) as described above

confidence in the range 0.0 through 1.0, with 1.0
indicating highest confidence

importance in the range 0.0 through 1.0, with 1.0
indicating highest importance

presentation order a number (1, 2, 3, etc.)

one or more snippets

A snippet is a spatio-temporal pointer to the piece
of evidence. It contains a start time and an end time,
given either as times or frame numbers. If the piece of
evidence is not purely auditory, the snippet also gives
initial and final bounding boxes within the frame,
consisting of pixel coordinates of the upper-left and
lower-right corners of the bounding box, relative to
the upper-left corner of the frame. The bounding
box was free to encompass the entire frame, and in
many systems did so. A snippet could optionally also
state the source (as described above). For implemen-
tation reasons, each snippet was required to explic-
itly include a snippet type (audio video, audio only,
or keyframe).

The MER Evaluation was performed on the MED
100-Ex pre-specified event condition. NIST chose,
for evaluation, ten events and six clips for each of
the ten events. If a system did not generate a re-
counting for some of the selected clips (because the
MED system did not deem them to be positive), the
system was evaluated on only the clips for which it
had produced a recounting. Two of the systems, how-
ever, were so conservative in their MED decisions that
this approach did not result in “enough” recountings
being selected, and NIST chose recountings for addi-
tional clips for those two systems. These two systems
are identified in the results.

The ten 2013 MER evaluation events, chosen from
the MED pre-specified events, included the five eval-
uated in 2012:

• E022 Cleaning an appliance,
• E026 Renovating a home,
• E027 Rock climbing,
• E028 Town hall meeting, and
• E030 Working on a metal crafts project.

Five additional MED pre-specified events were eval-
uated as MER events for the first time in 2013:

• E007 Changing a vehicle tire,
• E009 Getting a vehicle unstuck,
• E010 Grooming an animal,
• E013 Parkour, and
• E015 Working on a sewing project.

6.3 Evaluation procedures

Using the MER workstation, the judge studied the
event kit text (not the example videos) and then as-
sessed the recounting by:
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1. Reading the entire list of textual descriptions

2. Viewing/hearing all the snippets defined by the
spatiotemporal pointers

3. On the basis of the recounting, classifying the
clip as one of the following:

• The clip contains an instance of the event

• The clip does not contain an instance of the
event

• I do not know because the recounting does
not allow me to tell whether the clip con-
tains an instance of the event

• I do not know because the event kit does not
allow me to tell whether the clip contains an
instance of the event

The MER workstation makes the event kit text
continuously available to the judge for reference. The
MER Workstation does not display the source(s) of
the information—neither for each piece of evidence,
nor for the snippet(s) associated with each piece of
information. The stated sources of information can
be used for post-hoc understanding of the system.

6.4 Measures

In this section we discuss the metrics and link to
graphs showing the results. We wanted to score all
teams on the same clip:event set. We we able to do
so for eight of the ten systems (because they made a
positive MED decision on sufficiently many clip:event
pairs in common). However, for IBM there was not
enough overlap with those eight teams and we chose
a different set of clips for which to judge the recount-
ings. Likewise for Vireo, we were forced to choose a
different set of recountings. Therefore, the results, by
team, for IBM and for Vireo probably should not be
directly compared to each other or to the results for
the other eight teams.

For each submission and each event, NIST mea-
sured the following characteristics of the recountings,
for each system.

Percent Recounting Review Time:

The percentage of clip time the judges took to per-
form steps 1 through 3 above.

(Total time needed to perform steps 1–3 ) / (Total
duration of clips to be assessed)

The results by team for Percent Recounting Review
Time are shown in Figure 26 and the corresponding
results by event are shown in Figure 27.

Accuracy:

The degree to which the judges assessments (step 3
above) agree with the MED ground truth.

(Number of correctly classified clips) / (Number of
clips to be assessed)

A clip was scored as correctly classified if either

• the clip really is positive and the judge indicated
the clip contains an instance of the event, or

• the clip really is negative and the judge indicated
the clip does not contain an instance of the event.

The number of clips to be assessed does not count
any clips where the judge indicated the event kit did
not allow him/her to tell whether the clip contains
an instance of the event.

The results by team for Accuracy are shown in Fig-
ure 28 and the corresponding results by event are
shown in Figure 29.

Precision of the observation text:

The mean (across judges) of the judges’ scores on the
following question, which was asked for each obser-
vation: “How well does the text of this observation
describe the snippet(s)?”

• A: Excellent (4 points)
• B: Good (3 points)
• C: Fair (2 points)
• D: Poor (1 point)
• F: Fails (zero points)

The metric about the precision of the observation
text is intended to provide the system developers with
useful feedback about their recountings.

The results by team for Precision of the Observa-
tion Text are shown in Figure 30 and the correspond-
ing results by event are shown in Figure 31.

Comparisons among the above three metrics

A scatter plot for Percent Recounting Review Time
compared to the Precision of the Observation Text is
shown in Figure 32. A scatter plot for Accuracy com-
pared to Precision of the Observation Text is shown
in Figure 33. And a scatter plot for Accuracy com-
pared to Percent Recounting Review Time is shown
in Figure 34.
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Figure 26: Percent Recounting Review Time, by system

Figure 27: Percent Recounting Review Time, by event
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Figure 28: Accuracy, by system

Figure 29: Accuracy, by event
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Figure 30: Precision of the Observation Text, by system

Figure 31: Precision of the Observation Text, by event ID
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Figure 32: Precision of the Observation Text vs. Per-
cent Recounting Review Time

Figure 33: Accuracy vs. Precision of the Observation
Text

Figure 34: Accuracy vs. Percent Recounting Review
Time

We have plotted a least-squares linear regression
line for each of those three scatterplots. We have
done so as a way of asking ourselves whether there
is actually a linear relationship. Our belief in Figure
32 is that with increasing x-values (increasing Mean
Observation Text Score) we see decreasing dispersion
of the y-values (PRRT values). The two points in
the upper-left quadrant of the plot contribute sub-
stantially to the R or R-squared values (R = 0.6 and
R-squared = 0.35). However, it is not clear to us
whether the relationship between x and y is linear or
curvilinear in that plot. In contrast, in Figure 34 the
x values appear to have no association with the y val-
ues, and the PRRT values can be clearly seen to be
dense near zero, falling off rapidly to the right. That
lack of linear association is also reflected in fact that
the slope of the regression line is close to zero. Fi-
nally, in Figure 33, although there are many points in
the middle of the graph that are near the regression
line, the reader is invited to consider how a line on
the diagonal from the upper-left corner of the graph
to the bottom-right corner would also appear to re-
flect patterns in the scatter. Our parting observa-
tion about these three scatterplots is that, in each of
the three, trimming the 10 % to 20 % most extreme
values of the x-values and y-values would not bring
out other patterns, nor would various robust regres-
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sion approaches such as relplots. In short, apparent
patterns in these three scatterplots may be just the
eye playing tricks, and repetitions of the experiments
would be needed in order to judge whether that is the
case.

6.5 Results

For detailed results on each run’s performance,
see the on-line workshop notebook (TV13Notebook,
2013) and the workshop papers accessible from the
publications webpage (TV13Pubs, 2013). That level
of voluminous detail is omitted from this paper.

7 Interactive surveillance event

detection

The 2013 Surveillance Event Detection (SED) evalu-
ation was the sixth evaluation focused on event de-
tection in the surveillance video domain. The first
such evaluation was conducted as part of the 2008
TRECVID conference series (Rose, Fiscus, Over,
Garofolo, & Michel, 2009) and annually since. It was
designed to move computer vision technology towards
robustness and scalability while increasing core com-
petency in detecting human activities within video.
The approach used was to employ real surveillance
data, orders of magnitude larger than previous com-
puter vision tests, and consisting of multiple, syn-
chronized camera views.

For 2013, the evaluation re-used the 2009 test cor-
pus and 2010 events. We also continued the Interac-
tive SED Task introduced in 2012.

In 2008, NIST collaborated with the Linguistics
Data Consortium (LDC) and the research community
to select a set of naturally occurring events with vary-
ing occurrence frequencies and expected difficulty.
For this evaluation, we define an event to be an ob-
servable state change, either in the movement or in-
teraction of people with other people or objects. As
such, the evidence for an event depends directly on
what can be seen in the video and does not require
higher level inference. We have reused the same set
of seven events that were selected in 2010.

For 2013, the evaluation re-used the 2009 test cor-
pus. The test data was the Imagery Library for In-
telligent Detection System’s (iLIDS) (UKHO-CPNI,
2007 (accessed June 30, 2009)) Multiple Camera
Tracking Scenario Training (MCTTR) data set col-
lected by the United Kingdom’s Home Office Science
and Development Branch.

7.1 System task

In 2013, the Retrospective Surveillance Event Detec-
tion (rSED) and Interactive Surveillance Event De-
tection (iSED) tasks were supported.

• The retrospective task is defined as follows:
given a set of video sequences, detect as many
event observations as possible in each sequence.
For this evaluation, a single-camera condition
was used as the required condition (multiple-
camera input was allowed as a contrastive condi-
tion). Furthermore, systems could perform mul-
tiple passes over the video prior to outputting a
list of putative events observations (i.e., the task
was retrospective).

The retrospective task addresses the need for au-
tomatic detection of events in large amounts of
surveillance video. It requires application of sev-
eral Computer Vision techniques, involves sub-
tleties that are readily understood by humans,
yet difficult to encode for machine learning ap-
proaches, and can be complicated due to clutter
in the environment, lighting, camera placement,
traffic, etc.

• The interactive task is defined as follows: given
a collection of surveillance video data files (e.g.
that from an airport, or commercial establish-
ment) for preprocessing, at test time detect ob-
servations of events based on the event defini-
tion and for each return the elapsed search time
and a list of video segments within the surveil-
lance data files, ranked by likelihood of meeting
the need described in the topic. Each search for
an event by a searcher can take no more than
25 elapsed minutes, measured from the time the
searcher is given the event to look for until the
time the result set is considered final. Note that
iSED is not a short latency task. Systems can
make multiple passes over the data prior to pre-
sentation to the user.

The Motivation for an interactive task is that
SED remains a difficult task for humans and sys-
tems. Also, Interactivity and relevance feedback
have been effectively employed in other tasks.

The annotation guidelines were developed to ex-
press the requirements for each event. To determine
if the observed action is a taggable event, a reason-
able interpretation rule was used. The rule was, “if
according to a reasonable interpretation of the video,
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Figure 35: Camera views and coverage

the event must have occurred, then it is a taggable
event”. Importantly, the annotation guidelines were
designed to capture events that can be detected by
human observers, such that the ground truth would
contain observations that would be relevant to an op-
erator/analyst. In what follows we distinguish be-
tween event types (e.g., parcel passed from one person
to another), event instance (an example of an event
type that takes place at a specific time and place),
and an event observation (event instance captured
by a specific camera).

7.2 Data

The development data consisted of the full 100 h
data set used for the 2008 Event Detection (Rose
et al., 2009) evaluation. The video for the evalua-
tion corpus came from the approximate 50 h iLIDS
MCTTR data set. Both data sets were collected in
the same busy airport environment. The entire video
corpus was distributed as MPEG-2 in Phase Alter-
nating Line (PAL) format (resolution 720 x 576), 25
frames/sec, either via hard drive or Internet down-
load. Figure 35 shows the coverage and views from
the different cameras used for data collection.

Figure 36: Event name, their rate of occurrences in
Instances per Hour (IpH) / their average duration (in
seconds) and Definition

System performance was assessed on the same 15-
hour subset of the evaluation corpus as the 2009 Eval-
uation. Similar to the 2012 SED evaluation, systems
were provided the identity of the evaluated subset so
that searcher time for the interactive task was not
expended on non-evaluated material. Event annota-
tion was performed by the LDC using a three-pass
annotation scheme. The multi-pass process improves
the human annotation recall rates.

The videos were annotated using the Video Per-
formance Evaluation Resource (ViPER) tool. Events
were represented in ViPER format using an annota-
tion schema that specified each event observation’s
time interval.

7.3 Evaluation, measures

Sites submitted system outputs for the detection
of any 3 of 7 possible events (PersonRuns, Cell-
ToEar, ObjectPut, PeopleMeet, PeopleSplitUp, Em-
brace, and Pointing). Additional details for the list
of event used can be found in Figure 36. For each
instance observation, sites are asked to identify each
detected event observation by:

• the temporal extent (beginning and end frames)

• a decision score: a numeric score indicating how
likely the event observation exists with more pos-
itive values indicating more likely observations
(normalized)

• an actual decision: a boolean value indicating
whether or not the event observation should be
counted for the primary metric computation
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Figure 37: TRECVID 2013 SED Participants Chart

Developers were advised to target a low miss, high
false alarm scenario, in order to maximize the number
of event observations.

Groups were allowed to submit multiple runs with
contrastive conditions. System submissions were
aligned to the reference annotations scored for missed
detections / false alarms.

Since detection system performance is a trade-
off between probability of miss vs. rate of false
alarms, this task used the Normalized Detection Cost
Rate (NDCR) measure for evaluating system perfor-
mance. NDCR is a weighted linear combination of
the system’s Missed Detection Probability and False
Alarm Rate (measured per unit time). Participants
were provided a graph of the Decision Error Trade-
off (DET) curve for each event their system detected;
the DET curves were plotted over all events (i.e., all
days and cameras) in the evaluation set.

7.4 Results

There were 10 participants in 2013 (see figure 37),
for a total of 122 Interactive Event Runs and 126
Retrospective Event Runs.

Figure 38 presents the event-averaged lowest Ac-
tual NDCR by site’s rSED vs iSED for the 7 sites that
submitted both types of runs. Out of those 7 sites, 6
show some reduction in their NDCR, with three large
reductions (BrnoUT by 30 %, BUPT-MCPRL by 45
% and VIVAuOttawaLITIVpoly by 84 %).

From the 2012 evaluation (which used the same
data set), we can see that some improvement for re-
peat performers for the rSED (figure 39) and iSED
(figure 40) tasks. We can also see that iSED filters
rSED results.

Comparable results since 2009 for rSED, and since
for 2012 iSED are present in Figures 41-47. In those

Figure 38: Event-Averaged, Lowest Act NDCR by
Site: rSED vs. iSED

Figure 39: Event-Averaged, Lowest Act NDCR by
Site: rSED 2012 vs 2013
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Figure 41: SED ’09-13 : rSED and iSED - CellToEar
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Figure 42: SED ’09-13 : rSED and iSED - Embrace
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Figure 43: SED ’09-13 : rSED and iSED - ObjectPut
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Figure 44: SED ’09-13 : rSED and iSED - PeopleMeet
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Figure 45: SED ’09-13 : rSED and iSED - PeopleSplitUp
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Figure 46: SED ’09-13 : rSED and iSED - PersonRuns
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Figure 47: SED ’09-13 : rSED and iSED - Pointing
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Figure 40: Event-Averaged, Lowest Act NDCR by
Site: iSED 2012 vs 2013

plots, one can see that Single-person (PersonRuns,
PeopleSplitUp, Pointing) and Multi-Person (People-
Meet, Embrace) events show evidence of yearly im-
provements, yet not yet approaching human per-
formance. Person+Object (ObjectPut, CellToEar)
events remain difficult.

Readers are asked to see the results pages at the
back of the workshop notebook and on the TRECVID
website for information about each run’s perfor-
mance.

8 Summing up

This introduction to TRECVID 2013 has provided
basic information on the goals, data, evaluation
mechanisms and metrics used. Further details about
each particular group’s approach and performance for
each task can be found in that group’s site report.
The raw results for each submitted run can be found
in the results section at the back of the notebook.

As we reflect on a decade of TRECVid, which
launched as a standalone annual benchmarking ac-
tivity in 2003, we can see how some of the tasks
we address have matured significantly. Shot Bound-
ary Detection, story bound detection and automatic
summarisation have all seen great progress over the
decade while there are other tasks we are still work-
ing on because these are hard problems. Search, in all
its varieties from known item (re-)location to broad
search, event detection and automatic detection of

concepts remain as a focus for our benchmarking and
we will continue to throw hard problems like these
as well as increasingly larger video collections, at
the video research community because these are the
drivers that push out the boundaries of achievement.

While changing tasks and increasing video collec-
tion sizes are evolutions of TRECVid, less obvious
than these are the fact that in the last decade, sci-
entific reproducibility has come into focus, in par-
ticular the open access to research data on which
scientific experimentation is based. The ethos be-
hind TRECVid, and TREC, is to make the repro-
duction of experiments easy and that includes making
data, queries or topics, relevance judgments and scor-
ing methods, open, transparent and available. There
is a growing disquiet throughout the sciences about
scientific reproducibility, highlighted in an article in
The Economist on Oct 19, 2013, entitled ”Unreliable
Research: Trouble at the Lab”(*). This pointed at
the many reasons why some scientific experimenta-
tion, right across the scientific disciplines, cannot be
faithfully reproduced, including the rush to publish
resulting from pressures from industry and funding
agencies to see results, poor descriptions of scientific
methods, carelessness, or sometimes fraud.

In TRECvid, because of our in-built ethos of easy
reproducibility, we are somewhat insulated from this
but just because we have our data, to the extent we
are legally able, and our scoring methods available
for everyone does not mean we are immune from this.
We must ensure that we continue to provide enough
detail in our descriptions of TRECVid work, through
our workshop papers and other publications, so that
our methods can be reproduced for others to compare
their own work against.

9 Authors’ note

TRECVID would not have happened in 2013 without
support from the National Institute of Standards and
Technology (NIST) and the Intelligence Advanced
Research Projects Activity (IARPA). The research
community is very grateful for this. Beyond that, var-
ious individuals and groups deserve special thanks:

• Koichi Shinoda of the TokyoTechCanon team
agreed to host a copy of IACC.2 data

• Georges Quénot with Franck Thollard, Andy
Tseng, Bahjat Safadi from LIG and Stéphane
Ayache from LIF shared coordination of the se-
mantic indexing task, organized the community
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annotation of concepts, and provided judgments
for 50 concepts under the Quaero program.

• Georges Quénot provided the master shot refer-
ence for the IACC.2 videos.

• The LIMSI Spoken Language Processing Group
and VexSys Research provided ASR for the
IACC.2 videos.

• Cees Snoek helped choose the SIN concept pairs

• Noel O’Connor and Kevin McGuinness at
Dublin City University along with Robin Aly at
the University of Twente worked with NIST and
Andy O’Dwyer plus William Hayes at the BBC
to make the BBC EastEnders video available for
use in TRECVID

Finally we want to thank all the participants and
other contributors on the mailing list for their energy
and perseverence.

10 Appendix A: Instance

search topics

9069 OBJECT - a circular ’no smoking’ logo

9070 OBJECT - a small red obelisk

9071 OBJECT - an Audi logo

9072 OBJECT - a Metropolitan Police logo

9073 OBJECT - this ceramic cat face

9074 OBJECT - a cigarette

9075 OBJECT - a SKOE can

9076 OBJECT - this monochrome bust of Queen
Victoria

9077 OBJECT - this dog

9078 OBJECT - a JENKINS logo

9079 OBJECT - this CD stand in the market

9080 OBJECT - this public phone booth

9081 OBJECT - a black taxi

9082 OBJECT - a BMW logo

9083 OBJECT - a chrome and glass cafetiere

9084 PERSON - this man

9085 OBJECT - this David refrigerator magnet

9086 OBJECT - these scales

9087 OBJECT - a VW logo

9088 PERSON - Tamwar

9089 OBJECT - this pendant

9090 OBJECT - this wooden bench with rounded
arms

9091 OBJECT - a Kathy’s menu with stripes

9092 PERSON - this man

9093 OBJECT - these turnstiles

9094 OBJECT - a tomato-shaped ketchup dispenser

9095 OBJECT - a green public trash can

9096 PERSON - Aunt Sal

9097 OBJECT - these checkerboard spheres

9098 OBJECT - a P (parking automat) sign
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