AXES @ TRECVid MED 2013

Matthijs Douze¹, Zaid Harchaoui¹, <u>Dan Oneață</u>¹, Danila Potapov¹, Jérôme Revaud¹, Cordelia Schmid¹, Jochen Schwenninger², Jakob Verbeek¹, Heng Wang¹

> ¹INRIA–LEAR, Grenoble, France ²Fraunhofer Sankt Augustin, Germany

Table of Contents

1 Low-level features: static, motion, audio

Feature encoding: Fisher vector

3 High-level features

4 Experiments and results

Static and audio features

- Scale-invariant feature transform (SIFT, Lowe 2004)
- Mel-frequency cepstral coefficients (MFCC, Rabiner and Schafer 2007)

Static and audio features

- Scale-invariant feature transform (SIFT, Lowe 2004)
- Mel-frequency cepstral coefficients (MFCC, Rabiner and Schafer 2007)

 μ, σ

• Color descriptors (Clinchant et al., 2007).

	μ, σ					μ, σ				
Mean and variance									2	
\dots of RGB values \dots in 4 × 4 cells 1									$\frac{3}{16}$	
Descriptor dimensionality 96									96	

• Builds upon dense trajectory features (?, CVPR, ?)

- Builds upon dense trajectory features (?, CVPR, ?)
- Dense trajectories can be affected by camera motion.

• Idea: stabilize camera motion before computing optical flow.

- Idea: stabilize camera motion before computing optical flow.
- Method:
 - (1) extract feature points (SURF descriptors and dense optical flow)
 - 2 match feature points and estimate homography with RANSAC
 - 3 warp the optical flow.

• Idea: stabilize camera motion before computing optical flow.

Two succesive frames

• Idea: stabilize camera motion before computing optical flow.

Two succesive frames

Optical flow

Idea: stabilize camera motion before computing optical flow.
improves flow estimation

Two succesive frames

Optical flow

Warped optical flow

- Idea: stabilize camera motion before computing optical flow.
 - $\circ\,$ improves flow estimation
 - removes background tracks.

Two succesive frames

Optical flow

Warped optical flow

Removed trajectories

Removed trajectories under various camera motions

Table of Contents

2 Feature encoding: Fisher vector

Fisher vector for appearance

- Generalization of the bag-of-words.
- Strong performance across multiple tasks:
 - action recognition, action detection, event recognition (Oneată et al., ICCV, 2013)

Fisher vector for appearance

- Generalization of the bag-of-words.
- Strong performance across multiple tasks:
 - action recognition, action detection, event recognition (Oneață et al., ICCV, 2013)
 - image classification (Chatfield et al., BMVC, 2011)
 - image retrieval (Jégou et al., PAMI, 2012)
 - fine-grained image classification (Gavves et al., ICCV, 2013)
 - face verification (Simonyan et al., BMVC, 2013)
 - word spotting (Almazán et al., ICCV, 2013).

• Spatial Fisher vector (SFV) (Krapac et al., ICCV, 2011)

- encodes first and second moments of visual word locations
- adds 6 entries for each visual word:
 μ and σ for (x, y, t) coordinates.

• Spatial Fisher vector (SFV) (Krapac et al., ICCV, 2011)

- encodes first and second moments of visual word locations
- adds 6 entries for each visual word:
 μ and σ for (x, y, t) coordinates.

- Spatial Fisher vector (SFV) (Krapac et al., ICCV, 2011)
 - encodes first and second moments of visual word locations
 - adds 6 entries for each visual word:
 μ and σ for (x, y, t) coordinates.
- Compared to spatial pyramids:

(Oneață et al., ICCV, 2013)

• similar performance gain

- Spatial Fisher vector (SFV) (Krapac et al., ICCV, 2011)
 - encodes first and second moments of visual word locations
 - adds 6 entries for each visual word:
 μ and σ for (x, y, t) coordinates.
- Compared to spatial pyramids:

(Oneață et al., ICCV, 2013)

- similar performance gain
- SFV are more compact

• Spatial Fisher vector (SFV) (Krapac et al., ICCV, 2011)

- encodes first and second moments of visual word locations
- adds 6 entries for each visual word:
 μ and σ for (x, y, t) coordinates.

• Compared to spatial pyramids:

(Oneață et al., ICCV, 2013)

- similar performance gain
- SFV are more compact
- complementary.

Table of Contents

1) Low-level features: static, motion, audio

Feature encoding: Fisher vector

3 High-level features

4 Experiments and results

High-level features: OCR and ASR

- Optical character recognition (OCR)
- Automatic speech recognition (ASR) (from Fraunhofer IAIS)
 - trained on 100 hours of English broadcasts
 - language model trained on news articles and patents
- For both systems:
 - bag-of-words encoding with 110,000 words.
 - tf-idf weighting
 - ℓ_2 normalization.

Table of Contents

1 Low-level features: static, motion, audio

Feature encoding: Fisher vector

3 High-level features

• Spatial Fisher vectors improve for color and SIFT.

- Spatial Fisher vectors improve for color and SIFT.
- Comparison of the motion features (HOG, HOF, MBH):

- Spatial Fisher vectors improve for color and SIFT.
- Comparison of the motion features (HOG, HOF, MBH):
 MBH > HOG > HOF

- Spatial Fisher vectors improve for color and SIFT.
- Comparison of the motion features (HOG, HOF, MBH):
 - $\bullet \ \mathrm{MBH} > \mathrm{HOG} > \mathrm{HOF}$
 - $\bullet \ \mathrm{HOG}\mathrm{+MBH} > \mathrm{HOF}\mathrm{+MBH}$

- Spatial Fisher vectors improve for color and SIFT.
- Comparison of the motion features (HOG, HOF, MBH):
 - MBH > HOG > HOF
 - HOG+MBH > HOF+MBH
 - The combination of all the three channels is the best.

- Spatial Fisher vectors improve for color and SIFT.
- Comparison of the motion features (HOG, HOF, MBH):
 - MBH > HOG > HOF
 - HOG+MBH > HOF+MBH
 - The combination of all the three channels is the best.
- SIFT descriptors are complementary to the motion features.

- Spatial Fisher vectors improve for color and SIFT.
- Comparison of the motion features (HOG, HOF, MBH):
 - MBH > HOG > HOF
 - HOG+MBH > HOF+MBH
 - The combination of all the three channels is the best.
- SIFT descriptors are complementary to the motion features.
- Total processing time was 27 times slower than real-time on a single core.

Overview of our system: descriptors' dimensions and processing time.

Modality	Descriptor	Encoding	D	$\substack{\times \text{Real} \\ \text{time}}$
Motion	HOG+HOF+MBH	FV+H3	51k	$10 \\ 2 \\ 10 \\ 0.05$
Image	SIFT	FV+SFV	34k	
Image	Color	FV+SFV	73k	
Audio	MFCC	FV	20k	
Image	OCR	BoW (sparse)	110k	$1.5 \\ 3$
Audio	ASR	BoW (sparse)	110k	

Results on TRECVid '11 data

• Comparison to our earlier systems.

	DCR	mAP
Best TV'11	0.437	
AXES 2011	0.642	
AXES 2012	0.411	44.5
AXES 2013	0.379	52.6

Results on TRECVid '11 data

- Comparison to our earlier systems.
- Performance for individual channels

	DCR	mAP
Best TV'11	0.437	
AXES 2011	0.642	
AXES 2012	0.411	44.5
AXES 2013	0.379	52.6
Motion + SIFT		46.4
Color		27.7
Audio		18.2
ASR		8.2
OCR		10.8

Results on TRECVid '13 data

MED pre-specifi	MED ad-hoc		
Team	mAP	Team	mAP
AXES (1/15) BBNVISER (2/15) median	$34.6 \\ 33.0 \\ 24.7$	$\begin{array}{c} \text{AXES (1/14)} \\ \text{CMU (2/14)} \\ \text{median} \end{array}$	$36.6 \\ 36.3 \\ 23.3$

MED results, for the PROGAll, 100Ex challenge.

Results on TRECVid '13 data

MED pre-specifi	MED ad-hoc		
Team	mAP	Team	mAP
AXES (1/15) BBNVISER (2/15) median	$34.6 \\ 33.0 \\ 24.7$	$\begin{array}{c} \text{AXES (1/14)} \\ \text{CMU (2/14)} \\ \text{median} \end{array}$	$36.6 \\ 36.3 \\ 23.3$

MED results, for the PROGAII, 100Ex challenge.

Team	Full system	ASR	Audio	OCR	Visual
AXES	36.6	1.0	12.4	1.1	29 .4
BBNVISER	32.2	8.0	15.1	5.3	23.4
CMU	36.3	5.7	16.1	3.7	28.4
Genie	20.2	4.3	10.1		16.9
IBM-Columbia	2.8		0.2		2.8
MediaMill	25.3		5.6		23.8
NII	24.9		8.8		19.9
ORAND	3.8				3.8
PicSOM	0.6		0.1		0.6
SRIAURORA	24.2	3.9	9.6	4.3	20.4
Sesame	25.7	3.9	5.6	0.2	23.2
VisQMUL	0.2		0.2		0.2

Per-channel results on the MED ad-hoc 100Ex, challenge.

Conclusions

• Key components of our system:

- Improved motion features
- Spatial Fisher vector.
- Code available on our web-site http://lear.inrialpes.fr/software
- Check out our posters:
 - Action recognition with improved trajectories.
 - Action and event recognition with Fisher vectors on a compact feature set.