SRI International

CCNY-SRI: An interactive visual event detection system

Chenyang Zhang*, Xiaodong Yang*, Chucai Yi*, Yingli Tian*, Qian Yu**, Amir Tamrakar**, and Ajay Divakaran** *The City College of New York, ** SRI International Sarnoff
nter

About Us

- Media lab, The City College of New York (CCNY)
- SRI International

SRI International

- We participated last year's SED task as
"MediaCCNY" for the $1^{\text {st }}$ year

Overview of Our System

- Human tracking is involved
- User is involved as the final decision maker

Outline

- Feature Extraction
- Feature Purification
- Representation
- Event Inference (Classification)

-

 (Classification)

- User Interaction
 \author{ User Interaction

 正}
Feature Extraction

- 2 feature channels are used:
- 1. STIP-HOG/HOF
- 2. SURF/MHI - HOG

STIP

SURF/MHI

Motion History Image

- Two detectors extract complementary interest feature points
- Frames are downsampled: 720x576 -> 360x288

Feature Extraction

- Descriptor Channels:
- Histogram of Gradients (HOG)

Spatial Feature

- Histogram of Flows (HOF)

Temporal

Outline

- Feature Extraction
- Feature Purification
- Representation
- Event Inference (Classification)
- User Interaction

Feature Purification

- Two issues with extracted feature points:
- Huge number
- Too much Noise
- Feature purification is conducted on:
- Objective Saliency Capture (moving people)
- Semantic Saliency Capture (event frequency prior)

Human Tracking Mask

- Multiple human tracking bounding boxes are used as filtering masks

Event Belief Region

- Event specific event belief region is used to capture semantic saliency

Outline

- Feature Extraction
- Feature Purification
- Representation
- Event Inference (Classification)
- User Interaction

Feature Representation

- Local features (short strings) inside a "'window" are aggregated using Bag-of-words model
- Dimension Augmentation using feature mapping (long strings)

Feature Aggregation

- Feature dimension:
- STIP-HOG/HOF: 162 SURF/MHI-HOG: 256
- Code book is built on K-means clustering
- Spatial pooling uses a 3-layer pyramid:

Feature Mapping

- "XOR"

problem:

label	Original feature (x, y)	Mapped feature $(x, y, x y)$
-1	$(1,1)$	$(1,1,1)$
-1	$(-1,-1)$	$(-1,-1,1)$
1	$(1,-1)$	$(1,-1,-1)$
1	$(-1,1)$	$(1,-1,-1)$

- Feature mapping: map original feature to some high dimensional feature space

Outline

- Feature Extraction
- Feature Purification
- Representation
- Event Inference (Classification)
- User Interaction

Event Inference

- Cascade SVMs are used as classifier
- Each unit sample is a temporal window of 60

A Demo iter 1

A Demo iter 2

(0)

I

A Demo iter 3

Outline

- Feature Extraction
- Feature Purification
- Representation
- Event Inference (Classification)
- User Interaction

Human Interaction

- Motivation

- Let an expert user be the final decision maker

Human Interaction

- Some Facts about our UI

- "Reject" is the basic move
- "<=" or "=>" are seldom used
- More than 5 basic moves can be distracting

What did a user do?

Ground Truth

What did a user do?

Ground Truth

Results

- With 25 mins limit: (rejecting all others)

Event	Actual DCR			Minimum DCR	
	2013 Best	Ours	Cor./FA/Mis.	2013 Best	Ours
CellToEar	0.902	1.0024	$1 / 23 / 193$	0.9057	0.9991
Embrace	0.623	0.8573	$26 / 18 / 149$	0.6514	0.8573
ObjectPut	0.9806	0.9936	$6 / 10 / 615$	0.9803	0.9916
PeopleMeet	0.8704	0.9534	$33 / 82 / 416$	0.8684	0.9527
PeopleSplitUp	0.7781	0.9029	$20 / 30 / 167$	0.7771	0.9016
PersonRuns	0.5850	0.8596	$16 / 28 / 91$	0.5844	0.8590
Pointing	0.9564	1.0006	$13 / 39 / 1050$	0.9655	0.9959

- Remove 25 mins limit:

Event	Actual DCR			Minimum DCR	
	2013 Best	Ours	Cor./FA/Mis.	2013 Best	Ours
CellToEar	0.902	1.0027	$1 / 24 / 193$	0.9057	0.9991
Embrace	0.623	0.7919	$39 / 45 / 136$	0.6514	0.7909
ObjectPut	0.9806	0.9934	$10 / 29 / 611$	0.9803	0.9924
PeopleMeet	0.8704	0.9195	$65 / 196 / 384$	0.8684	0.9177
PeopleSplitUp	0.7781	0.8053	$41 / 75 / 146$	0.7771	0.8050
PersonRuns	0.5850	0.8596	$16 / 28 / 91$	0.5844	0.8590
Pointing	0.9564	1.0079	$70 / 225 / 993$	0.9655	0.9952

observations

Event	Actual DCR			Minimum DCR	
	2013 Best	Ours	Cor./FA/Mis.	2013 Best	Ours
CellToEar	0.902	1.0024	$1 / 23 / 193$	0.9057	0.9991
Embrace	0.623	0.8573	$26 / 18 / 149$	0.6514	0.8573
ObjectPut	0.9806	0.9936	$6 / 10 / 615$	0.9803	0.9916
PeopleMeet	0.8704	0.9534	$33 / 82 / 416$	0.8684	0.9527
PeopleSplitUp	0.7781	0.9029	$20 / 30 / 167$	0.7771	0.9016
PersonRuns	0.5850	0.8596	$16 / 28 / 91$	0.5844	0.8590
Pointing	0.9564	1.0006	$13 / 39 / 1050$	0.9655	0.9959

Event	Actual DCR			Minimum DCR	
	2013 Best	Ours	Cor./FA/Mis.	2013 Best	Ours
CellToEar	0.902	1.0027	$1 / 24 / 193$	0.9057	0.9991
Embrace	0.623	0.7919	$39 / 45 / 136$	0.6514	0.7909
ObjectPut	0.9806	0.9934	$10 / 29 / 611$	0.9803	0.9924
PeopleMeet	0.8704	0.9195	$65 / 196 / 384$	0.8684	0.9177
PeopleSplitUp	0.7781	0.8053	$41 / 75 / 146$	0.7771	0.8050
PersonRuns	0.5850	0.8596	$16 / 28 / 91$	0.5844	0.8590
Pointing	0.9564	1.0079	$70 / 225 / 993$	0.9655	0.9952

- Significant bias is observed between user judgment and ground truth
- E.g. in PeopleMeet, user brought in 146 clips, while 114 of them is false alarm.
- Improvement is observed in those events with reasonable number of detections
- weighted fraction of total time for different events?

Acknowledgement

- Our team members:

Chucai Yi

Prof. Yingli Tian

CCNY

SRI
International
SRI
International

Dr. Amir Tamrakar

Dr. Qian Yu

Dr. Ajay Divakaran

al

he

Thanks

