# IBM-Northwestern@TRECVID 2013: Surveillance Event Detection(SED)

Yu Cheng i\*, Lisa Brown i, <u>Quanfu Fan</u>i, Rogerio Feris i, Alok Choudhary \*, Sharath Pankanti i

i IBM T. J. Watson Research Center\* Northwestern University





# Outline

- Retrospective Event Detection
  - System Overview
  - Temporal Modeling for Event Detection
  - Performance Evaluation
- Interactive Event Detection
  - Interactive Visualization
  - Risk Ranking
  - Performance Evaluation

# System Overview (CMU-IBM 2012)



## System Overview (IBM 2013)



# **Temporal Modeling**

- Motivation:
  - Rich temporal patterns exhibit among visual events.
  - Exploiting temporal dependencies to enhance event detection .



#### Joint Segmentation and Detection

- Overall Framework:
  - A quadratic integer programming approach combining classification and temporal dependencies between events.
  - For an arbitrary segmentation  $S = \{S_1, S_2, ..., S_n\}$  of X where  $S_i = \mathbf{X}(t_i, t_{i+1})$  ( $t = \{t_1, t_2, ..., t_{n+1}\}$  are transition points, the quality of the segmentation can be measured by:

$$u \sum_{i=1}^{n} \sum_{k=1}^{K} \zeta_{i}^{k} \varphi^{k}(S_{i}) + (1-\mu) \sum_{j=1}^{n} \sum_{j'=j+1}^{n'} \sum_{k=1}^{K} \sum_{k'=1}^{K} p(k,k') \zeta_{j}^{k} \zeta_{j'}^{k'}$$

$$n' \leq n$$

$$\forall i : \sum_{k=1}^{K} \zeta_{i}^{k} \leq 1$$

$$\forall i, \forall i', \forall k, \forall k' : \zeta_{i}^{k} + \zeta_{i'}^{k'} \leq 1$$

$$if \qquad S_{i} \cap S_{j} = 0$$

# Joint Segmentation and Detection

- Classification Model:
  - Trained discriminatively using multiclass SVM [3] at different window sizes (30, 60, 90 and 120 frames)
  - Non-event is treated as a special null class
- Model Solver:
  - If only first-order dependency is considered, the objective function can be re-written as:

$$f(\mathbf{X}, K) = \mu \sum_{i=1}^{n} \varphi^{k}(S_{i}) + (1-\mu) \sum_{j=1}^{n} p(j-1, j)$$

- The problem can be solved by dynamic programming [4], Given any vide flip  $X_{(0,u)}$  with length u:

$$f(X_{(0,u)}, K) = \operatorname{argmax}_{l_{\min} \leq l \leq l_{\max}} f(\mathbf{X}_{(0,u-l)}, K) + f(\mathbf{X}_{(u,u-l)}, K).$$
  
$$l_{max} \text{ and } l_{min} \text{ are the detection length of video frames.}$$

[3] K. Crammer and Y. Singer. On the Algorithmic Implementation of Multi-class SVMs, JMLR, 2001.

[4] M. Hoai, Z.-Z. Lan, and F. De la Torre. Joint segmentation and classification of human actions in video. In CVPR, 2011.

#### **Performance Evaluation**

| Primary<br>Runs Results | IBM 2013 |        |        | Others' Best 2013 |        | CMU-IBM2012 |        |
|-------------------------|----------|--------|--------|-------------------|--------|-------------|--------|
|                         | Ranking  | ActDCR | MinDCR | ActDCR            | MinDCR | ActDCR      | MinDCR |
| CellToEar               | 1        | 0.9985 | 0.9978 | 1.0069            | 0.9814 | 1.0007      | 1.0003 |
| Embrace                 | 1        | 0.7873 | 0.7733 | 0.8357            | 0.824  | 0.8         | 0.7794 |
| ObjectPut               | 2        | 1.0046 | 1.002  | 0.9981            | 0.9783 | 1.004       | 0.9994 |
| PeopleMeet              | 2        | 1.0267 | 0.9769 | 0.9474            | 0.9177 | 1.0361      | 0.949  |
| PeopleSplitUp           | 1        | 0.8364 | 0.8066 | 0.8947            | 0.8787 | 0.8433      | 0.7882 |
| PersonRuns              | 2        | 0.7887 | 0.7792 | 0.7708            | 0.7623 | 0.8346      | 0.7872 |
| Pointing                | 3        | 1.0045 | 0.9904 | 0.9959            | 0.977  | 1.0175      | 0.9921 |

- Compared to our last year's results based on FV (CMU-IBM 2012):
  - this year's system got improvement over 6/7 events (primary run).
- Compared to other teams' results (Others' Best 2013):
  - our system leads in 3/7 events (primary run).

# Outline

- Retrospective Event Detection
  - System Overview
  - Temporal Modeling for Event Detection
  - Performance Evaluation
- Interactive Event Detection
  - Interactive Visualization
  - Risk Ranking
  - Performance Evaluation

# Interactive Visualization

#### • Motivations:

- How can we present events to the users more effectively?
  - E.g. two events "peoplemeet" and "pointing" may exist successively. Looking at them together are more beneficial than checking one at each time alone.
- How can we present more informative events to the users for correction/verification?
  - E.g. correcting mis-detected events is more rewarding. for example, "embrace"→ "peoplemeet" vs. "pointing"→ "nonevent".

#### **Event-specific Detection Visualization**



#### **Event-specific Detection Visualization**







Embrace





Pointing





ObjectPut

- Approach
  - To measure the adjudication risk of each event detected by considering: 1) the margin of the top two candidates in classification; 2) temporal relations and 3) potential gain of DCR
  - Ranking events by their risk scores
  - Checking and re-labeling events from high risk to low risk.

– Considering our classification results: for each segmentation  $S_i$  we have its top two candidates  $\varphi^k(S_i)$  and  $\varphi^{k'}(S_i)$ , and their priors p(k) and p(k')



 $w_m$  is the cost of a mis-detection and  $w_f$  is the cost of a false alarm,  $\sum$  is the normalizer. ( $w_m = 1, w_f = 0.005$  were set based on DCR)

- Pair-wise events : for  $S_i$  and  $S_{i+1}$ , we have  $\varphi^{k_j}(S_i)\varphi^{k_{j+1}}(S_{i+1})$  $\varphi^{k'_j}(S_i)\varphi^{k'_{j+1}}(S_{i+1})$  and their priors  $p(k_j, k_{j+1})$  and  $p(k'_j, k'_{j+1})$ 





## **Performance Evaluation**

|               | Evaluation Set (25min * 7) |                  |        |        |  |
|---------------|----------------------------|------------------|--------|--------|--|
| Actual DCR    | Retro                      | Risk-1 (primary) | Risk-2 | Risk-3 |  |
| CellToEar     | 0.9985                     | 0.9956           | 0.994  | 1.0013 |  |
| Embrace       | 0.7873                     | 0.7337           | 0.6551 | 0.6705 |  |
| ObjectPut     | 1.0046                     | 0.9928           | 0.987  | 1.0053 |  |
| PeopleMeet    | 1.0267                     | 0.9584           | 0.9145 | 0.9684 |  |
| PeopleSplitUp | 0.8364                     | 0.8489           | 0.8304 | 0.8924 |  |
| PersonRuns    | 0.7887                     | 0.7188           | 0.6865 | 0.7588 |  |
| Pointing      | 1.0045                     | 0.9781           | 0.974  | 0.9877 |  |

- **Retro**: retrospective event detection
- **Risk-1**: independent evaluation by risk ranking (25 mins for each event type)
- **Risk-2**: joint evaluation by risk ranking (a total of 175 mins)
- **Risk-3**: independent evaluation using classification scores

Risk-2 > Risk-1 > Risk-3 > Retro

## Discussions

- A few thoughts
  - ground truth (automatic, crowdsourcing,...)?
  - Independent and/or dependent evaluation?

# Conclusions

- Retrospective System:
  - Joint-segmentation-classification provides a promising schema for surveillance event detection.
  - Modeling temporal relations between events can boost the detection performance.
- Interactive System:
  - Event visualization with strong temporal patterns is a more efficient presentation for an interactive system.
  - Risk-based ranking demonstrates its effectiveness in relabeling events.

#### References:

- [1] M. yu Chen and A. Hauptmann. Mosift: Recognizing human actions in surveillance videos. In CMU-CS-09-161, 2009.
- [2] F. Perronnin and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010.
- [3] K. Crammer and Y. Singer. On the Algorithmic Implementation of Multi-class SVMs, JMLR, 2001.
- [4] M. Hoai, Z.-Z. Lan, and F. De la Torre. Joint segmentation and classification of human actions in video. In CVPR, 2011.

#### **Future Works**

- Retrospective System:
  - Exploiting long distance temporal relations into this jointsegmentation-detection framework.
  - Exploring the performance trade-offs between localization and categorization.
- Interactive System:
  - Better visualization layout need to be developed, E.g. time layout.
  - Various risk ranking methods need to be tried.
  - User feedback utilization methods need to be incorporated. E.g. interactive learning.

# **Multiple Detections Visualization**

- Objective:
  - To find visualization methods that enable multiple events representation.
- Solution:
  - Visualize the events in a graph-based layout: each node is an individual event and the edge between them representing the temporal relation.

# Outline

- Retrospective Event Detection
  - System Overview
  - Temporal Modeling for Event Detection
  - Performance Evaluation
- Interactive Event Detection
  - Interactive Visualization
  - Risk Ranking
  - Performance Evaluation