



#### VIREO@INS-TV13

#### Search of Small Objects by Topology Matching, Context Modeling, and Pattern Mining

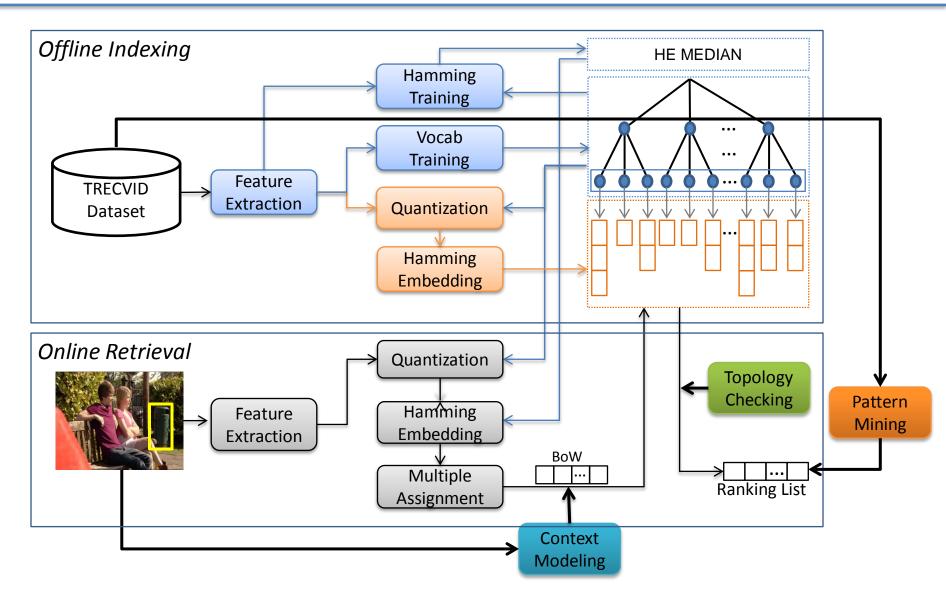
Wei Zhang, Chong-Wah Ngo

VIREO: VIdeo REtrieval grOup City University of Hong Kong

- Introduction
- Solutions
  - TC: Topology Checking
  - CM: Context Modeling
  - PM: Pattern Mining
- Conclusion

- Introduction
- Solutions
  - TC: Topology Checking
  - CM: Context Modeling
  - PM: Pattern Mining
- Conclusion

## **General Information**


- Reference dataset
  - 464-hours Videos
  - 470k Shots
  - 640k keyframes
    - 1 frame every 4 seconds
    - ≈ 1.36 frames/shot
- Query
  - 30 topics: object(26) + person(4)
  - query image + ROI
- Our Baseline system
  - BoW model
  - visual matching based on SIFT





9075: a SKOE can

## **Retrieval Framework**



#### **Retrieval Framework**

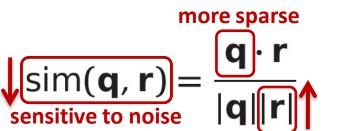
- Time efficiency
  - ~ 300ms/query: time cost for online search
  - ~ 10s/topic, including everything:
    - 4 queries
    - feature extraction, quantization, online search, re-ranking
- Memory cost: ~12 Gbytes
- Source code for the basic framework
  - available as as part of "VIREO-VH: Video Hyperlinking"
  - <u>http://vireo.cs.cityu.edu.hk/VIREO-VH/</u>



## Main Challenge

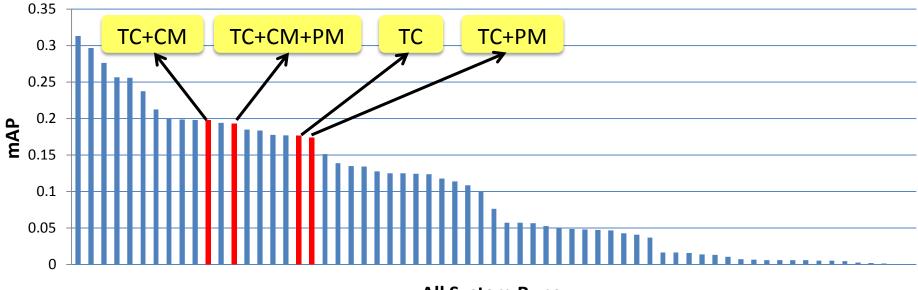
- A target is considered as **small**, if it covers < **10%** area
- For TV13, 77% of queries are small !

#### small instance on query image


lack of knowledge on the search target

#### small instance on reference image

- similarity score is easily diluted


#### Topology Checking (TC)

- make better use of limited info by elastic spatial checking
- Context Modeling (CM)
  - increase information quantity by considering background context
- Pattern Mining (PM)
  - link small instances offline



#### **Our Submissions**

- Three techniques
  - Topology Checking : TC
  - Context Modeling : CM
  - Pattern Mining : PM



**All System Runs** 

- Introduction
- Solutions
  - TC: Topology Checking
  - CM: Context Modeling
  - PM: Pattern Mining
- Conclusion

# **Topology Checking**

- Spatial transformation in INS
  - What we might expect
    - linear transforms (scaling, rotation, translation, shearing)
  - What we actual have
    - much more complex transforms
- The verification model we want
  - tight enough to reject false matches
  - tolerant complex spatial transformations



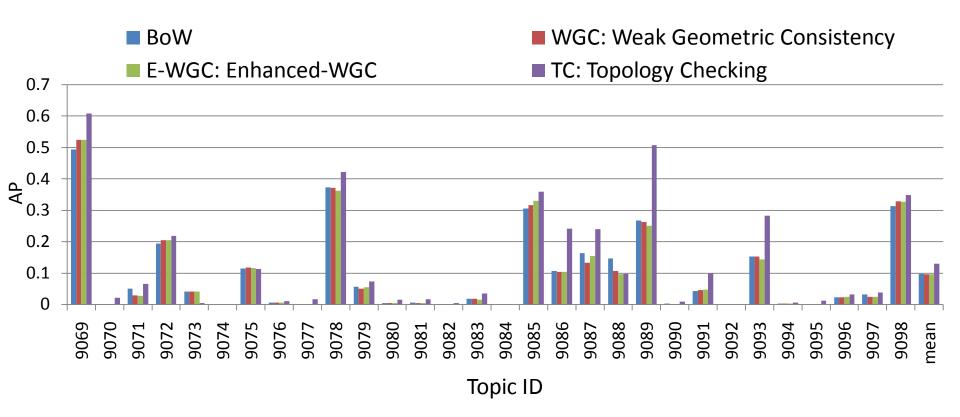


9088: Tamwar – non-rigid motion



9081: a black taxi - different views of non-planar obj

# **Topology Checking - Illustration**


**Sketch** - Match **Delaunay Triangulation (DT)** # matched points (15)  $\mathbf{E}_{\Delta \mathcal{Q}}$ : edges in  $\Delta \mathcal{Q}$ Q  $\Delta Q$  $\mathbf{E}_{\Delta \mathcal{R}}$ : edges in  $\Delta \mathcal{R}$  $|\mathbf{E}_{\Delta Q}| = 42$  $|\mathbf{E}_{\Delta \mathcal{R}}| = 42$ # common edges (28)  $\mathcal{R}$  $\Delta \mathcal{R}$ 

 $\mathrm{BF}(\mathcal{Q},\mathcal{R}) = \|\mathbf{E}_{\Delta\mathcal{Q}} \cap \mathbf{E}_{\Delta\mathcal{R}}\|$ 

## Benefits of Topology Checking (TC)

- Edge of the graph
  - encode relative positioning / spatial nearness
- # common edges depicts the topology similarity
- Avoid using noisy local features' scale/orientation
  - local features' orientation / scale are biased
  - only location is used
- Get evidence from multiple *local* consistent sub-regions
  - robust to small viewpoint change / motion

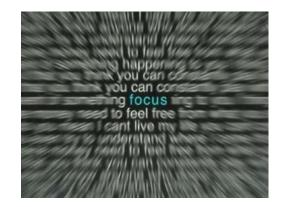
#### Results for spatial checking – ROI Only



- Introduction
- Solutions
  - TC: Topology Checking
  - CM: Context Modeling
  - PM: Pattern Mining
- Conclusion

#### Full-Image v.s. ROI search

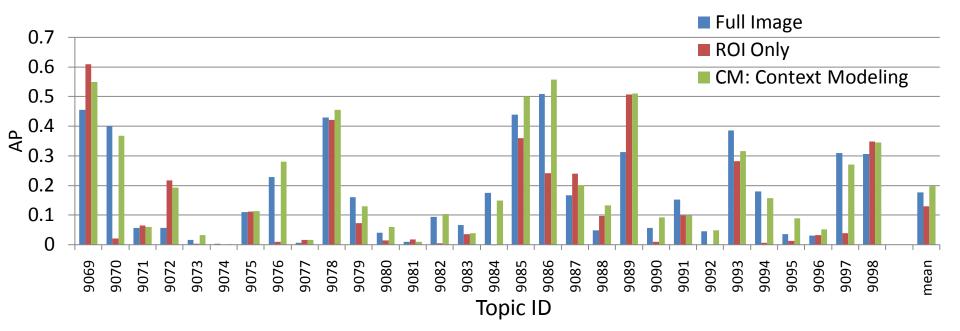
- Full-Image is mostly better, since:
  - limited info inside small ROI
  - high correlation between ROI and its background
    - they appear/disappear together




9070: small red obelisk <obelisk, this painting> <obelisk, this room> <obelisk, this woman>

- Sometimes, ROI is better, when:
  - low correlation  $\rightarrow$  instances that could appear anywhere

# **Context Modeling**


- Observation
  - Feature  $\in$  ROI: highly correlated with the target
  - Feature ∉ ROI: correlation degenerates quickly.
- Context modeling
  - weight background context
  - simulate the behavior of "<u>stare</u>"
  - blur things away from the <u>focus</u>



$$k(x) = \begin{cases} 1, & \text{if } x \in \mathbf{ROI}, \\ \exp(-\frac{\|x-f\|^2}{2\delta^2}), & \text{otherwise, with } \delta^2 = -\frac{diag^2}{8\ln 0.1} \end{cases}$$

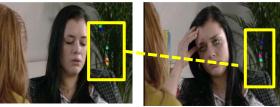
#### **Results - Context Modeling**

- Tradeoff between two extremes
- Avoids zero-performance, when one of them does not work
- Improves overall performance



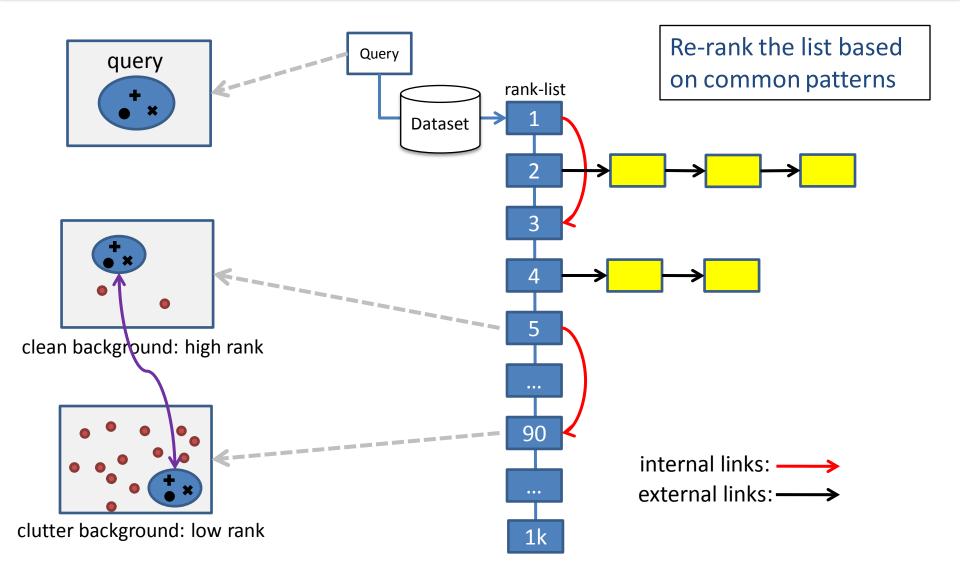
- Introduction
- Solutions
  - TC: Topology Checking
  - CM: Context Modeling
  - PM: Pattern Mining
- Conclusion

#### Common patterns


- "BBC Easterenders" dataset
  - repetitions of {characters, scenes, objects}
  - hyperlink shots with common patterns

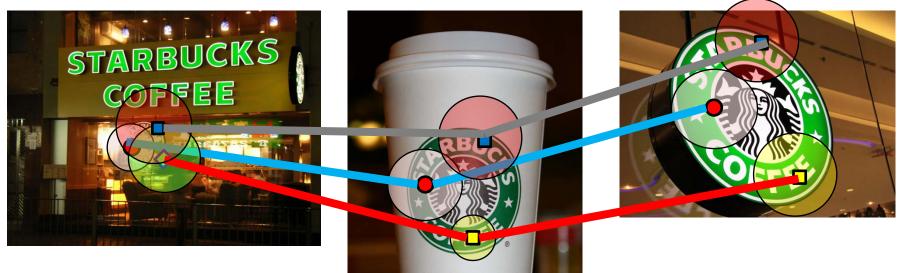
- Are these patterns useful for INS?
  - − large patterns →
- → no harm

 $\rightarrow$  potentially helpful


- Near Duplicates
- already easy to retrieve
- small patterns
  - small objects
  - difficult to retrieve








#### Improve INS with Common Patterns



#### How to mine Common Patterns

- Extract ToF (Thread of Feature)
  - a ToF is a set of consistent patches across images
  - represented as a set of image ids
- Cluster ToF
  - min-Hash is adopted for efficient clustering
  - clustered ToFs
    - each ToF → a link over a set of images Ω
    - multiple ToFs  $\rightarrow$  a strong link over  $\Omega \rightarrow$  a pattern



#### Patterns Mined from TV13 dataset

- Near Duplicates (ND)
  - easiest pattern to mine
  - many similar shots in TV series
- Objects/scenes
- Only a few is related with the 30 topics
- Some examples ...





















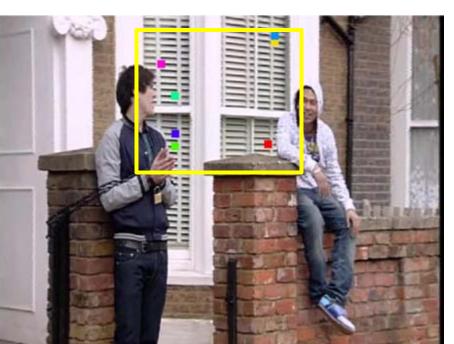














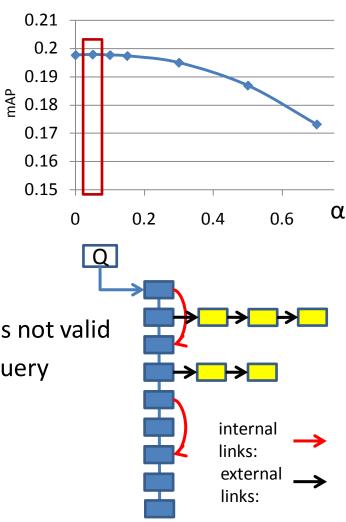










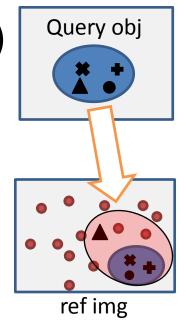


#### Approach-1: Frame-level linking

- Re-rank results using patterns
  - Random Walk
  - nodes: top 1k images in rank-list
  - initial weights: retrieval scores
  - link: mining results
  - link strength:
    - # patterns containing the image pair



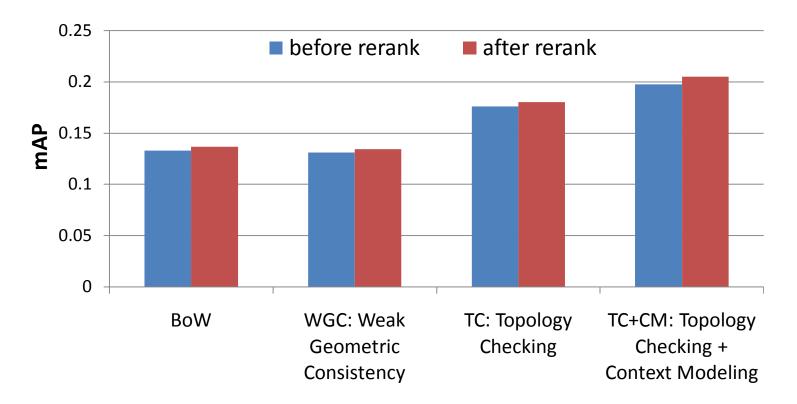
#### Results – Frame-level Linking

- Results
  - weight for mining result : α
  - weight for retrieval score : 1 α
  - best performance:  $\alpha \approx 0$
- Problems
  - only internal links are considered
  - transitivity propagation at frame-level is not valid
  - most links has nothing to do with the query
  - emphasize Near Duplicates
    - NDs always have strong links




#### Approach-2: Instance-level linking

- Encode locations of matched points via (μ, σ<sup>2</sup>)
  - $-\mu$ : the centroid of matched points
  - $-\sigma^2$ : the variance of the location
  - Z-test for region overlapping
    - two sets of points overlap, if  $Z = \frac{\mu_1 \mu_2}{\sqrt{\sigma_1^2 + \sigma_2^2}} < t$




- no distinction on link strength (binary strength)
- give a bonus score to the linked images (both in/external links)



#### Results – Instance-level Linking

- Mining improves corresponding results consistently
  - invalid transitivity is prevented
  - only a few links are related with the 30 topics



- Introduction
- Solutions
  - TC: Topology Checking
  - CM: Context Modeling
  - PM: Pattern Mining
- Conclusion

#### Conclusion

- Visual matching is mostly enough, despite low sampling rate
- Small objects are still difficult to search
- Complex spatial configuration in INS
  - Topology suits better
- ROI v.s. full-image search
  - tradeoff between precision and recall
  - generally, full-image search performs better, and
  - proper weighting is even better
- Pattern mining
  - many patterns can be linked offline
  - large fraction is near duplicates
  - low overlap with the query is the major problem