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Abstract. In this notebook paper, we describe the submissions of Fu-
dan Team to the Multimedia Event Detection task for TRECVID 2014.
Our system exploits popular low-level descriptors to capture visual ap-
pearance, motion and audio information from a video clip. In addition, it
also incorporates the high-level semantic feature generated by a Convo-
lutional Neural Network pre-trained on ImageNet. We performed classi-
fication with SVMs. We submitted results for the full MED14 evaluation
in two (010Ex and 100Ex) training conditions.

1 System Overview

For TRECVID 2014 [1], we participated in the Multimedia Event Detection
(MED) task. Fig. 1 presents the framework of our system. We first extract various
low-level visual appearance, motion and audio features, as well as the high-
level semantic feature. Then both Fisher Vector (FV) and Bag-of-Words (BoW)
are adopted to produce quantized feature representations. SVMs are utilized
to classify the features. Finally, the output scores from different classifiers are
combined to produce a final prediction with fusion parameters estimated on the
development set.
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Fig. 1. The framework of our system for processing a video clip.

2 System Components

In this section, we elaborate the technical components of our system. First, we
describe the adopted features as well as their corresponding encoding strate-



gies. Then we introduce the classifiers for model training and different fusion
approaches.

2.1 Feature Representation

– Motion Features: Motion information plays a significant role for event
detection. In our system, motion is captured using the state-of-the-art im-
proved dense trajectory features [2], which exhibits top-notch performance
on action recognition tasks. Along with the densely extracted trajectories,
three features are computed: HOG, HOF, and MBH. These features are fur-
ther quantized respectively using the FV representation with the vocabulary
size being 256.

– Appearance Features: To capture static visual appearance information,
we adopt the dense SIFT (DIFT) [3] feature and the Color SIFT [4] feature.
Here, given a video frame, we extract these two appearance features and then
quantize them into FV representations with a codebook of 256 codewords
separately. Then, frame-level features are averaged to generate a video-level
feature representation.

– MFCC Audio Feature: In addition to the above visual features, audio fea-
tures can provide complementary clues. For this, we adopt the well-known
Mel-Frequency Cepstral Coefficients (MFCC). It is first computed over each
32ms time-window (with 16ms overlap) of the soundtrack and then all the
descriptors are quantized into a single BoW feature representation.

– High-level Semantic Feature: We also extract the high-level semantic
feature with a Convolutional Neural Network pre-trained on the ImageNet
2010 Challenge data, which consists of 1.2 million images totaling 1,000
concepts. For each key frame in a given video, we obtain a 1,000-d concept
score with the trained model. Then frame-level scores are then averaged to
generate a video-level concept feature vector for further classification.

2.2 Classification and Fusion

To train event detection models, we employ two different types of classifiers in
our system:

– Linear SVMs: To enhance classification performance, we first perform early
fusion with the appearance feature and motion feature by concatenating
them into a long vector. Since the concatenated vector is discriminative
enough in the high-dimensional space, we adopt linear SVMs with C fixed
to 100 to train the model.

– Non-linear SVMs: We first map features with BoW representation and the
high-level semantic features into χ2-kernel separately. Then, we train two
independent classifiers.



With multiple classifiers, each video clip is accordingly associated with multiple
output scores, which are then fused to compute the final prediction.

3 Experiments

In this section, we present experimental results obtained on the development set
of this year and report our official results on the MED14-Test dataset. Table 1
presents the performance of individual features and their combinations under the
010Ex training condition on the development set. We can see that visual features
outperform the high-level semantic feature and the MFCC feature significantly.
Table 1 also demonstrates that the fusion of multiple features promotes the
overall performance. More specifically, combining visual features with the high-
level semantic feature gives a 2.55% performance gain. In addition, the fusion of
all features achieves the best performance.

Features mAP

Visual (Appearance + Motion) 15.12%
High-level Semantic Feature 7.18%
MFCC Audio 2.25%
Visual + High-level Semantic Feature 17.67%
Visual + High-level Semantic Feature + MFCC Audio 18.92%

Table 1. Performance of individual features and their combinations.

Our official submissions for the full MED14 evaluation include the 010Ex and
100Ex training conditions. For the Pre-Specified task, we achieved a 10.7% mAP
(010Ex) and a 22.1% mAP (100Ex); for the Ad-Hoc task, we achieved a 7.4%
mAP (010Ex) and a 15.6% mAP (100Ex). Notice that although we discovered
the high-level semantic feature could be extremely helpful on the development
set, unfortunately we found a bug in the extraction phase of this feature on the
MED14-Test dataset. Regretfully, our official submissions did not take advantage
of the powerful feature, with which we could obtain better results.
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