

BUPT-MCPRL@TRECVID 2014: Surveillance Event Detection(SED)

Qi Chen (chen_qi1990@163.com) Zhicheng Zhao, Wenhui Jiang, Jinlong Zhao, Yuhui Huang, Xiang Zhao, Lanbo Li, Yanyun Zhao, Fei Su, Anni Cai BUPT-MCPRL Beijing University of Posts and Telecommunications

Our Submission

• BUPT_MCPRL 2014 Retrospective Result

Event	Rank	ADCR	ADCR of Other Best Systems		
Embrace	2	0.8318	0.8113		
PeopleMeet	4	1.0354	0.8587		
PeopleSplitUp	4	0.9476	0.8353		
PersonRuns	4	0.9070	0.8256		
Pointing	1	0.9998	1.0027		

Outline

- Retrospective System Overview
- Pedestrian Detection
- Pedestrian Tracking
- Detected by CNN
 - Embrace and Pointing
- Detected by Trajectory Analysis
 - PeopleMeet and PeopleSplitUp
 - PersonRuns
- Performance Evaluation
- Conclusion

Retrospective System Overview

Pedestrian Detection

Pedestrian Detection by Head-Shoulder-CNN

 suppress the effect of partial occlusion

Pedestrian Detection

- The Architecture of Our CNN
 - much smaller than Krizhevsky's network
 [Krizhevsky, NIPS 2012]

Pedestrian Detection

- Samples
 - from TrecVid08-Dev_set and TrecVid08-Eval_Set
 - positive
 - 11,538 for training
 - 4,946 for testing
 - randomly horizontal flipping
 - negative :
 - anything of non-positive
 - three times the number of positive
- Details of Training
 - single NVIDIA GTX 780Ti GPU
 - Core i7 desktop CPU
 - 3 hours for training
 - learning rate : 0.01

Pedestrian Tracking

- Multi-Target Tracking [Bo Yang et al. CVPR 2013]
 - online approach to learn non-linear motion patterns and robust appearance models
 - deal with detection result with long gap
 - more robust for tracking with lots of occlusion

Pedestrian Tracking

 We Propose to use Gaussian process regression to smooth the trajectory.

Detection responses x

Detection responses x and the true trajectory t

The relationship Pr(w|x) between the response x and point w of t

Unsmoothed trajectories

Smoothed trajectories

Outline

- Retrospective System Overview
- Pedestrian Detection
- Pedestrian Tracking
- Detected by CNN

 Embrace and Pointing
- Detected by Trajectory Analysis

 PeopleMeet and PeopleSplitUp
 - PersonRuns
- Performance Evaluation
- Conclusion

- Regard the events detection as the detection of key-poses
- Key-poses for Embrace and Pointing

Embrace

- Method
 - adopt CNN to recognize the key-pose
 - use the architecture of pedestrian detection
 - the inputs of models are the pedestrian detection results with 1.5-fold expansion

The architecture of our CNN

- Samples
 - from TrecVid08-Dev_set and TrecVid08-Eval_Set
 - positive
 - total : 2100
 - randomly cropping
 - randomly horizontal flipping
 - RGB jittering
 - negative
 - any pedestrian detection results of non-Embrace or non-Pointing
 - three times the number of positive
- Details of Training
 - single NVIDIA GTX 780Ti GPU
 - Core i7 Desktop CPU
 - 2 hours for training
 - learning rate : 0.01

retro-Embrace

Years	ADCR	MDCR	#CorDet	#FA	#Miss
2014	0.8318	0.8318	26	44	112
2013	1.0503	0.9850	13	380	162

• retro-Pointing

Years	ADCR	MDCR	#CorDet	#FA	#Miss
2014	0.9998	0.9910	21	57	774
2013	1.6387	1.0064	219	2576	844

Outline

- Retrospective System Overview
- Pedestrian Detection
- Pedestrian Tracking
- Detected by CNN

 Embrace and Pointing
- Detected by Trajectory Analysis
 - PeopleMeet and PeopleSplitUp
 - PersonRuns
- Performance Evaluation
- Conclusion

PeopleMeet and PeopleSplitUp

PeopleMeet

- split into 3 subevents: walking closely, slowing down and stay
- use HMM (Hidden Markov Model) to model the event [Chan et al. ICPR 2004]
- observe every two persons based on their trajectories
- the distances between persons and their speed are used as features to construct observation sequence
- PeopleSplitUp
 - split into 3 subevents : stay, speeding up, walking away
 - similar to the detection of PeopleMeet

PersonRuns

- Distinguish running trajectories
 - pick the fast-moving pedestrian tracks by Forwardbackward Motion History Image (MHI) [Z Yin et al. AVPI 2009]
 - FB-MHI = F-MHI & B-MHI
 - set a threshold of the ratio of non-zero pixels in the region of the pedestrian detection result

Video

Forward MHI

Backward MHI

Result

Performance Evaluation

Event	Rank	ADCR of Other Best Systems	BUPT_MCPRL 2014 Retrospective Result (Update Version)				
Lvent			ADCR	MDCR	#CorDet	#FA	#Miss
Embrace	2	0.8113	0.8318	0.8318	26	44	112
PeopleMeet	4	0.8587	1.0354	1.0018	6	128	250
PeopleSplitUp	4	0.8353	0.9476	0.9455	19	158	133
PersonRuns	4	0.8256	0.9070	0.9038	8	139	43
Pointing	1	1.0027	0.9998	0.9910	21	57	774

- Method of CNN
 - Embrace and Pointing
 - works very well
- Method of Trajectory Analysis
 - PeopleMeet, PeopleSplitUp and PersonRuns
 - not good

Conclusion

- We proposed the methods of CNN and trajectory analysis for event detection
- Method of CNN
 - works very well
 - detects a small number of false alarms and a relatively big number of correct detections
 - much less computations
 - easy to implement
- Method of trajectory analysis
 - not good
 - difficult to get the true information such as velocity

Thanks!

www.bupt-mcprl.net