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Pedestrian Detection

* Pedestrian Detection by Head-Shoulder-CNN

— suppress the effect of partial occlusion

Sliding
Window




Pedestrian Detection

e The Architecture of Our CNN

— much smaller than Krizhevsky’s network
[Krizhevsky, NIPS 2012]
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Pedestrian Detection

 Samples
— from TrecVid08-Dev_set and TrecVid08-Eval Set
— positive
e 11,538 for training

* 4,946 for testing
* randomly horizontal flipping

— negative :
* anything of non-positive
* three times the number of positive
e Details of Training
— single NVIDIA GTX 780Ti GPU
— Core i7 desktop CPU
— 3 hours for training
— learning rate : 0.01



Pedestrian Tracking

* Multi-Target Tracking [Bo Yang et al. CVPR 2013]

— online approach to learn non-linear motion patterns and
robust appearance models

— deal with detection result with long gap
— more robust for tracking with lots of occlusion
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Pedestrian Tracking

* We Propose to use Gaussian process regression to
smooth the trajectory.

I

Detection responses x Detection responses x and the The relationship Pr(w|x) between
true trajectory t the response x and point w of t

Unsmoothed trajectories Smoothed trajectories



Outline

* Detected by CNN

— Embrace and Pointing



Embrace and Pointing

* Regard the events detection as the detection
of key-poses

e Key-poses for Embrace and Pointing

Pointing Embrace



Embrace and Pointing

e Method

— adopt CNN to recognize the key-pose
— use the architecture of pedestrian detection

— the inputs of models are the pedestrian detection
results with 1.5-fold expansion
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The architecture of our CNN



Embrace and Pointing

 Samples
— from TrecVid08-Dev_set and TrecVid08-Eval _Set
— positive
* total : 2100
* randomly cropping

* randomly horizontal flipping
* RGB jittering

— negative
e any pedestrian detection results of non-Embrace or non-Pointing
* three times the number of positive

e Details of Training
— single NVIDIA GTX 780Ti GPU
— Core i7 Desktop CPU
— 2 hours for training
— learning rate : 0.01



Years

2014

2013

Embrace and Pointing

* retro-Embrace

ADCR

0.8318

1.0503

* retro-Pointing

Years

2014

2013

ADCR

0.9998

1.6387

MDCR

0.8318

0.9850

MDCR

0.9910

1.0064

#CorDet

26

13

#CorDet

21

219

HFA

44

380

HFA

57

2576

#HMiss

112

162

#HMiss

774

844



Outline

* Detected by Trajectory Analysis
— PeopleMeet and PeopleSplitUp
— PersonRuns



PeopleMeet and PeopleSplitUp

* PeopleMeet

— split into 3 subevents: walking closely, slowing down and
stay

— use HMM ( Hidden Markov Model ) to model the event
[Chan et al. ICPR 2004]

— observe every two persons based on their trajectories
— the distances between persons and their speed are used
as features to construct observation sequence
* PeopleSplitUp
— split into 3 subevents : stay, speeding up, walking away
— similar to the detection of PeopleMeet



PersonRuns

* Distinguish running trajectories

— pick the fast-moving pedestrian tracks by Forward-
backward Motion History Image (MHI) [Z Yin et al. AVPI
2009]

— FB-MHI = F-MHI & B-MHI

— set a threshold of the ratio of non-zero pixels in the region
of the pedestrian detection result

Forward MHI Backward MHI Result



Performance Evaluation

ADCR of Other
Best Systems

Event Rank

Embrace 2
PeopleMeet 4
PeopleSplitUp 4
PersonRuns 4

Pointing 1

0.8113

0.8587

0.8353

0.8256

1.0027

 Method of CNN

« Embrace and Pointing

« works very well

* Method of Trajectory Analysis
* PeopleMeet, PeopleSplitUp and PersonRuns

* not good
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Conclusion

* We proposed the methods of CNN and trajectory
analysis for event detection

* Method of CNN

— works very well

— detects a small number of false alarms and a relatively
big number of correct detections

— much less computations
— easy to implement

 Method of trajectory analysis
— not good
— difficult to get the true information such as velocity
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