On the use of semantic features for the semantic indexing task

Bahjat Safadi, Nadia Derbas, Abdelkader Hamadi, Mateusz Budnik, Philippe Mulhem and Georges Quénot
UJF-LIG
and
many other people from the IRIM group of GDR 720 ISIS

10 November 2014
Outline

• System overview
• Semantic features
• Contrast experiments
• Engineered versus learned features
• Conclusion
Main runs scores 2014 (from NIST)

Median = 0.206

* non-LIG submitted runs in 2013 against 2014 testing data (progress runs)
* LIG (Quaero) submitted runs in 2013 against 2014 testing data (progress runs)
* LIG submitted runs in 2014 against 2014 testing data (main runs)
Basic classification pipeline

- Descriptor extraction
- Classification
- Late fusion
- Classification score

Input sources: Text, Audio, Image
LIG/Quaero/IRIM classification pipeline

Descriptor extraction

Classification

Descriptors and classifier variants fusion

Higher level hierarchical fusion

Classification score

Text Audio Image

+ hierarchical fusion [Strat et al., ECCV/IFCVCVR workshop 2012, Springer 2014]
LIG/Quaero/IRIM classification pipeline

Descriptor extraction → Classification → Descriptors and classifier variants fusion → Higher level hierarchical fusion → Re-ranking (re-scoring)

Text → Audio → Image

+ Temporal re-ranking [Safadi et al., CIKM 2011; Wang et al, TV 2009]: update shot scores considering other shots’ scores for a same concept
LIG/Quaero/IRIM classification pipeline

+ Descriptor optimization [Safadi et al., MTAP 2014]: combination of PCA-based dimensionality reduction and pre- and post- power transformations
LIG/Quaero/IRIM classification pipeline

Descriptor extraction → Descriptor transformation → Classification → Descriptors and classifier variants fusion → Higher level hierarchical fusion → Re-ranking (re-scoring)

Text → Audio → Image

Conceptual feedback

+ conceptual feedback [Hamadi et al., MTAP, 2014]
LIG/Quaero/IRIM classification pipeline

- **Descriptor extraction**
- **Descriptor transformation**
- **Classification**
- **Descriptors and classifier variants fusion**
- **Higher level hierarchical fusion**
- **Re-ranking (re-scoring)**

Text, Audio, Image

Conceptual feedback

+ conceptual re-ranking [Hamadi et al., MTAP, 2014] update concept scores considering other concepts’ scores for a same shot
LIG/Quaero/IRIM classification pipeline

Text Audio Image

Descriptor extraction → Descriptor transformation → Classification → Descriptors and classifier variants fusion → Higher level hierarchical fusion → Re-ranking (re-scoring) → Classification score

Conceptual feedback + semantic descriptors [TRECVid 2013 and 2014]
Conceptual feedback: unfolded graph
Conceptual feedback: semantic descriptor

- Descriptor extraction
- Descriptor transformation
- Classification
- Descriptors and classifier variants fusion
- Higher level hierarchical fusion
- Re-ranking (re-scoring)

Image
Audio
Text

Classification score iteration 0

shared components (computed only once)

semantic descriptor extraction

standard descriptor processing

Classification score iteration 1
Semantic descriptor: general case

Any classification system using any approach trained on any annotated data for any target concept set

Model vectors [Smith et al. ICME 2003]
Semantic descriptors trained on ImageNet

• Fisher Vector based descriptor [Perronnin, IJCV 2013]:
 - XEROX/ilsvrc2010: vectors of 1000 scores trained on ILSVRC10 and applied to key frames, kindly produced by Florent Perronnin from Xerox (XRCE)
 - XEROX/imagenet10174: same with 10274 concepts scores trained ImageNet

• Deep learning based descriptors, computed by Eurecom and LIG using Berkeley caffe tool [Jia et al, 2013]:
 - EUR/caffe1000: vectors of 1000 scores trained on ILSVRC12 and applied to key frames, fusing outputs for 10 variants of each input image
 - LIG/caffe1000b: same with a different version of the tool and using only one variant of each input image
“Quasi-semantic” descriptors from deep learning and ImageNet

[Krizhevsky et al., 2012]
- 7 hidden layers, 650K units, 630 M connections, 60M parameters
- GPU implementation (50× speed-up over CPU)
- Trained on two GPUs for a week
“Quasi-semantic” descriptors from deep learning and ImageNet

- Deep learning based descriptors, computed by LIG using Berkeley caffe tool [Jia et al, 2013]:
 - LIG/caffe_fc7b_4096: 4096 values of the last hidden layer (non convolutional)
 - LIG/caffeFc6b_4096: 4096 values of the last but one hidden layers (non convolutional)
 - LIG/caffeFc5b_43264: 43264 values of the last but two hidden layers (convolutional, 13×13×256)
- Not strictly semantic as not classification scores, close to the semantic level however
- Expected to perform better than the last layer:
 - No (or les) information loss due to the targeting of different and/or unrelated target concepts
Local semantic descriptors trained on TRECVid 2003

• Scores for 15 TRECVid 2003 concepts (sky, building, water, greenery ...) on image patches trained using local annotations [Ayache et al., IVP 2007]
 - LIG/percepts*: computed at various resolutions in a pyramidal way, aggregated by concatenation
 - Computed using local color and texture descriptors

• No longer state of the art
Experiments

• Use of SIN 2013 development data only (no tuning on SIN 2013 test data) and various components using ImageNet annotated data → D type submissions

• Evaluation on SIN 2013 and 2014 test data

• Use of a combination of kNN and MSVM for classification [Safadi, RIAO 2010]

• Use of uploader information: multiplicative factor at the video level, weighted at 10%, provided by Eurecom [Niaz, TV 2012]
Performance of “low-level” descriptors

- LIRIS OC-LBP
- LIG opponent SIFT
- CEALIST pyramidal bag of SIFT
- ETIS color (lab BoW) and texture (wavelets)
- LISTIC SIFT with retina masking
- ETIS VLAT (vector of locally aggregated tensors)
- 13 Low-level "engineered" descriptor

MAP 2013
MAP 2014
Performance of semantic descriptors

13 "low-level" "engineered" descriptors
Xerox semantic features ILSVRC 1000
Xerox semantic features ImageNet 10174
Xerox semantic features (fused)
Caffe semantic features LIG
Caffe semantic feature Eurecom
Caffe semantic features output layer (fused)
Caffe quasi-semantic hidden layer 5 (43264)
Caffe quasi-semantic hidden layer 6 (4096)
Caffe quasi-semantic hidden layer 7 (4096)
Caffe semantic features last two hidden layers...
LIG/concepts first iteration (includes Xerox)
LIG/concepts second iteration (includes Xerox)
Temporal re-scoring on semantic descriptors

- 13 "low-level" "engineered" descriptors
- Xerox semantic features ILSVRC 1000
- Xerox semantic features ImageNet 10174
- Xerox semantic features (fused)
- Caffe semantic features LIG
- Caffe semantic feature Eurecom
- Caffe semantic features output layer (fused)
- Caffe quasi-semantic hidden layer 5 (43264)
- Caffe quasi-semantic hidden layer 6 (4096)
- Caffe quasi-semantic hidden layer 7 (4096)
- Caffe semantic features last two hidden layers...
- LIG/concepts first iteration (includes Xerox)
- LIG/concepts second iteration (includes Xerox)
Combination of improvement methods

The relative gain brought by each improvement method depends upon the order in which they are applied.

Final conceptual re-scoring did not further improve on 2014 data
Use of semantic features for the semantic indexing task

• Fisher vectors based descriptors on par with deep learning based descriptors
• Both on par with a combination of 13 low-level engineered descriptors types, some of which being state of the art
• Any single engineered descriptor performs significantly lower than any semantic descriptor → why? maybe a question of training data (more and cleaner in ImageNet)
• Conceptual feedback based semantic descriptors better than all (even when not including other semantic ones)
• Fusion and combination with other methods (e.g. temporal re-scoring) further improves
• Direct application of FV and deep learning on SIN training data on-going but unlikely to compete
• Very small gain from the uploader field
Thanks