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Problem statement

Recognize and translate video events
Learning from few examples
Provide semantic interpretation of videos

Event Attempting bike trick

Video
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Recognizing events

Representing videos as histograms of low-level features

Local Feature
descriptors embedding
* Visual descriptors * Bag-of-words

*SIFT, HOG, GIST, ...
* Video descriptors * VLAD

*MBH, STIP, ... * Fisher vector
* Audio descriptors

* jo-visual BoW
*MFCC, AIM, ... Audio-visual Bo

Problem: very high-dimensional and non semantically
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[Jiang et al., TRECVID 2010] [Natarajan et al., CVPR 2012] [Chen et al., MM 2013]



Recognizing and translating events

Representing videos as histograms of concept scores

Deep convolutional neural network
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* Bag-of-words * Attribute detection
*SIFT, HOG, GIST, ...

* Video descriptors
*MBH, STIP, ...

* VLAD

* Concept detection

* Fisher vector

* Audio descriptors

*MFCC, AlIM, ... *Audio-visual BoW
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Problem: define, annotate and train concept classifiers
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[Smith et al., ICME 2003] [Hauptmann et al., TMM 2007] [Merler et al., TMM 2012] [Ma et al., MM 2012]



Recognition and translation by embedding

W A : Stunt

Y e
—

Xi Yi
Joint space where x. W = y. A
Explicitly relate training W and A from multimedia

A = |[dentity matrix individual term classifiers
A = Projection matrix select/group terms

[Rasiwasa et al., MM 2010] [Weston et al., IJCAI 2011] [Akata et al., CVPR 2013] [Das et al., WSDM 2013]



VideoStory: Embed the story of a video

Design criteria: learn W and A such that
Descriptiveness: preserve video descriptions

Predictability: recognize terms from video content



Key observation: Compelling forces

Crazy guy doing insane stunts on bike




Why is this important?

Grouping terms:
Number of classes is reduced
Training classifiers per group:

More positive examples available per group

We can train from freely available web data



Key contribution: Joint optimization

Jointly optimize for descriptiveness and predictability

Lvs(A, W) = mSin Li(A,S)+ L,(S,W)

Hyperparameter: size of the embedding S
L, Loss function for descriptiveness
L, Loss function for predictability

VideoStory connects the two loss functions
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VideoStory: Training

VideoStory Training

Set of videos and their captions

Encode video features x;

Video and descriptions

Fisher Vectors of MIBH [wang iccv'13]

Encode video descriptions y.
Bag-of-words of terms

Train using Stochastic Gradient Descent
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YouTubed6K dataset

Videos and title descriptions from YouTube
46K videos, 19K unique terms in descriptions

Seeded from video event descriptions
Filters to remove low quality videos
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Crazy guy doing insane stunts on bike.
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Available for download: www.mediamill.nl



VideoStory: Event classifier training

VideoStory Training Event Classifier Training

lVideo Labels

Video and descriptions

Event classifiers:
SVM with RBF kernel
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Datasets for evaluation

TRECVID Multimedia Event Detection 2013
56K videos - 20 events - 10 positives train videos

Columbia Consumer Video

OK videos - 15 events - 10 positives train videos
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[Jiang et al. ICMR 2011][Strassel et al. LREC 2012]



VideoStory: Recognition and translation

VideoStory Training Event Classifier Training

lVideo Labels

S

Video and descriptions

Recognition and Translation Eva I u al—i on:

Video
£

Event score
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Description
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Experiment 1: Effect of Embedding

Freqguent terms: train classifier for most frequent terms
Grouping first: first descriptiveness; then predictability
VideoStory: joint descriptiveness and predictability

TRECVID MED Columbia Consumer Videos
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VideoStory outperforms other embeddings



mAP

Experiment 2: Story Quality vs. Quantity

Expert10K: 10K TRECVID videos with expert descriptions
: 10K random subset of YouTube46K dataset
YouTube4d6K: 46K YouTube videos and descriptions

TRECVID MED Columbia Consumer Videos

X T 0.45 T T T T T
- -
B =
,,,,, ST I g
vvvvv e T
0.16F R ) J
20
s W e
0
Vs *

mAP

K
Mg
vvvv
ffff
o

|
e
!
"
!
t
i
w

32 64 128 256 512 1024 2048 32 64 128 256 512 1024 2048
Embedding Dimensionality Embedding Dimensionality

Web supervision on par with expert provided descriptions
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Experiment 3: VideoStory translation

Getting a vehicle unstuck Rock climbing
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Experiment 3: VideoStory translation

Evaluate on TRECVID MED

Ground-truth: provided descriptions
Measure with ROUGE-1

TRECVID MED
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VideoStory outperforms predefined attributes
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VideoStory at TRECVID

20



VideoStory recognition at TRECVID 2014

Deep CNN VideoStory
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Features for training event classifiers
Example based event search (10Ex and 100Ex)

We train SVM with RBF kernel
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VideoStory translation at TRECVID 2014

Deep CNN VideoStory
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Translations for matching with event definition
Text based event search (OEx )

We use cosine similarity
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Computational efficiency

Fast feature computation
Convolution and multiplication over pixel values
~54 secs per video mostly spent on video decoding

Fast event classifier train and test
Training < 60 s per event
Classifying one test video only 0.015 s
1K-dimensional video representation

23



Efficiency: feature computation

Time to compute the features for MED14Full
Takes 259 hours on a single machine with 16 cores
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Event recognition accuracy

CNN features
VideoStory - CNN

100Ex

CNN features
VideoStory - CNN
OOOEx VideoStory - CNN

010Ex

Competitive accuracy with a single feature only
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Conclusions

VideoStory a semantic multimedia embedding
— Jointly optimizes descriptiveness & predictability
— Training event classifiers from few examples
— Translate videos to textual description

Effectively and efficiently recognizes events

Adds meaning to deep convolutional networks

Thank youl!
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