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* X. Zhou, C.-Z. Zhu, Q. Zhu, S. Satoh, Y.-T. Guo, A practical spatial re-
ranking method for instance search from videos, In ICIP, 2014.



The problem

• Classical RANSAC spatial re-ranking is proved 
to be effective for image retrieval purpose.

• Yet no work on classical spatial re-ranking has 
been systematically reported for instance 
search from videos so far

– Efficiency is a big concern, as 

videos are composed of multiple frames, and frame-by-
frame spatial verification is too prohibitive

– Effectiveness is also unclear *
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*  W. Zhang and C.-W. Ngo. Searching visual instances with topology 
checking and context modeling. In ICMR, 2013. 



Our efforts

• To efficiency

– A representative image/frame selection scheme

Avoids verifying all images of a video/topic

– VQ based tentative matching

Avoids expensive NN search and accessing raw SIFT.

• To effectiveness

– A ROI-originated RANSAC scheme

Regards ROI as a priori in transformation computation 
and the background a posteriori in the voting phase.
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Methodology

1. Representative selection:

2. VQ based tentative matching
Raw features quantized to the same visual words 

are considered as matches.

3. ROI-originated RANSAC 
Transformation is estimated from the ROI while 

verified on the full image
6



Baseline system *
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* C.-Z. Zhu, H. Jégou, S. Satoh, Query-adaptive asymmetrical  dissimilarities 
for visual object retrieval, In ICCV, 2013.



TRECVID INS2013 dataset
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Experiments on INS2013
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Examples
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Conclusions

• The representative selection scheme does take effect: which 
significantly outperforms the random method, while slightly 
inferior to exhausting matching all image pairs.

• Surprisingly, the VQ based method is remarkably better than 
the NN based method: burstness, reference…

• In general, larger k better performance for VQ based method.  

• The ROI-originated RANSAC method really works, that’s to say, 
transformation is better to be computed from the ROI (as a 
priori information). In contrast, the verification should be 
fulfilled on the full image (background helps in voting).

1. C.-Z. Zhu, X. Zhou, and S. Satoh. Bag-of-words against nearest-neighbor search 
for visual object retrieval. In ACPR, 2013.

2. X. Zhou, C.-Z. Zhu, Q. Zhu, S. Satoh, Y.-T. Guo, A practical spatial re-ranking 
method for instance search from videos, In ICIP, 2014. 11
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Our submissions

• Experimental settings (same as last year)
– Sample 5 frames/sec. 

– SIFT only 
• 3 detectors: Hessian-affine, Harris-Laplace and MSER.

• 2 descriptors: Root-SIFT and color SIFT.

• Our submissions
– NU_1: The proposed re-ranking method on NU_2.

– NU_2: Asymmetrical δ2 dissimilarity with multiple SIFTs.

– NU_3: Asymmetrical δ1 dissimilarity with multiple SIFTs.

– NU_4: Our own implementation of HE*
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* H. Jegou, M. Douze, and C. Schmid. Hamming embedding and weak 
geometric consistency for large scale image search. In ECCV, 2008.



Performance table
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1. We take the average of scores of querying by each image, 
which performs similarly as searching after pooling all images  
2. In general, more query images better performance*

* C.-Z. Zhu, Y.-H. Huang, and S. Satoh. Multi-image aggregation for better 
visual object retrieval. In ICASSP, 2014.



Performance per topic of the best run

• In total we won 14 out of 27 topics.
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Compare results on topics
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Re-ranked Baseline1. On average, the re-ranked results are better than the 
baseline, quite significantly on some topics.
2. While on some topics, the re-ranking method performs 
even worse. Therefore, a fusion algorithm, like NII method, 
could further improve the overall performance. 16
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Thank you! 


