Semantic Indexing Using Deep CNNs and GMM Supervectors

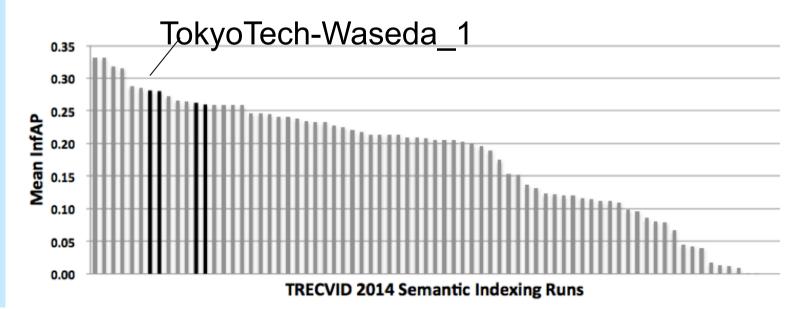
<u>Nakamasa Inoue</u> and Koichi Shinoda Tokyo Institute of Technology Zhang Xuefeng and <u>Kazuya Ueki</u> Waseda University

Outline

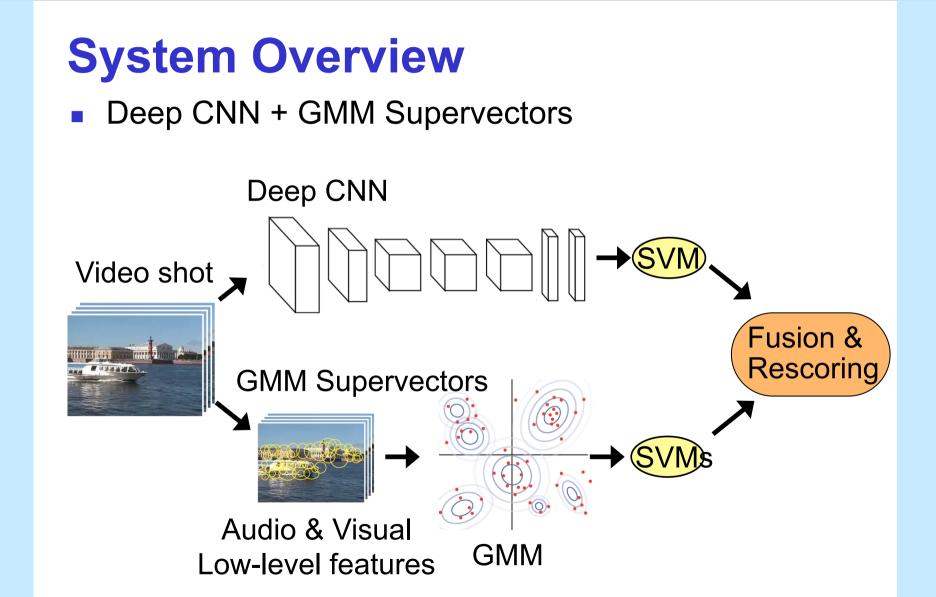
- Part 1: Our system at TRECVID 2014
 - Deep CNNs + GMM spuervectors
 - n-gram models for re-scoring

Best result: Mean InfAP = 0.281

Part 2: Motion features & Future work



1



Deep CNN

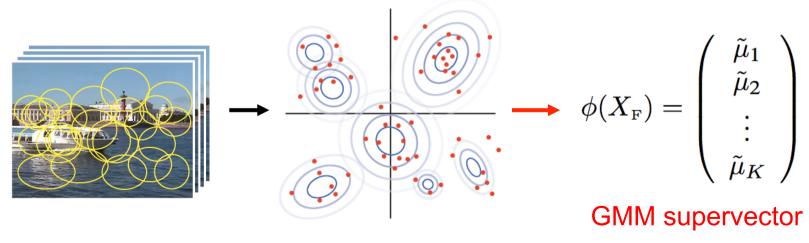
- A 4096 dimensional feature vector at the sixth layer is extracted
- A pre-trained model on ImageNET 2012 [1]



[1] Y. Jia, et al., Caffe: Convolutional Architecture for Fast Feature Embedding. Proc. ACM Multimedia Open Source Competition, 2014. 3

GMM Supervectors

- Extend BoW to a probabilistic framework
- 1) Extract 6 types of visual/audio features: Har-SIFT, Hes-SIFT, Dense HOG, Dense LBP, Dense SIFTH, and MFCC
- 2) Estimate GMM parameters for each shot
- 3) Combine normalized mean vectors



Shot Scores

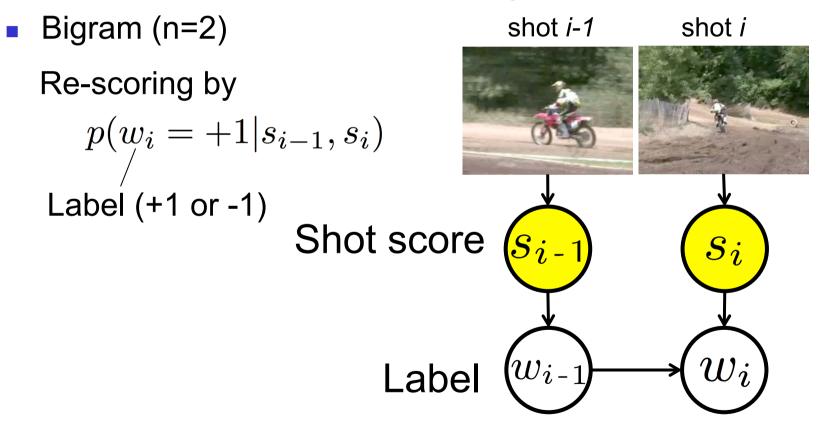
Linear combination of SVM scores

$$s = \sum_{\mathbf{F} \in \mathcal{F}} \alpha_{\mathbf{F}} f_{\mathbf{F}}(X_{\mathbf{F}}), \quad 0 \leq \alpha_{\mathbf{F}} \leq 1, \quad \sum_{\mathbf{F}} \alpha_{\mathbf{F}} = 1$$

where F is a feature type, $\alpha_{\rm F}$ is a weight.

n-Gram Models

n-consecutive video shots are dependent

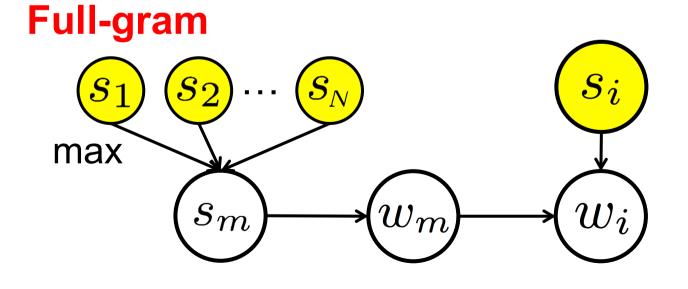


N. Inoue and K. Shinoda, "n-gram models for video semantic indexing," ACM MM 2014.

A Full-Gram Model

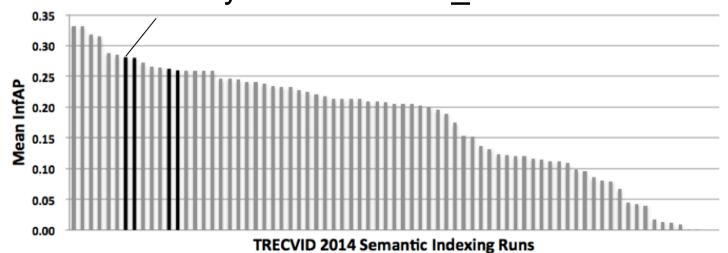
- n-consecutive video shots are dependent
- Full-gram
- we simply add the maximum shot score in a video clip

$$s'_i = (1-p)s_i + ps_{\max}$$
 $p = r \left\langle \frac{\#(\text{positive shots in a video clip})}{\#(\text{shots in a video clip})} \right\rangle$

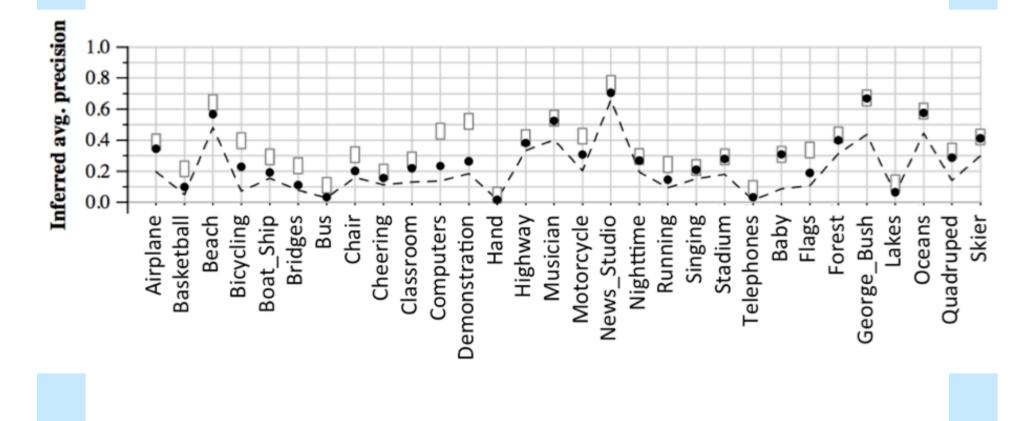


Results		Mean
Run ID	Method	InfAP
TokyoTech-Waseda_4	baseline: GMM Supervectors + Full- gram re-scoring	0.260
TokyoTech-Waseda_3	+ sampling	0.262
TokyoTech-Waseda_2	+ Deep CNN	0.280
TokyoTech-Waseda_1	+ Deep CNN (optimized weight)	0.281

TokyoTech-Waseda_1



InfAP by Semantic Concepts



Evaluation of n-Gram Models

Mean AP on SIN 2012

Method	MeanAP SIN 2012
Baseline	0.306
Bi-gram(n=2)	0.312
Tri-gram(n=3)	0.312
Full-gram	0.321

Conclusion (Part 1)

- Deep CNN + GMM Supervector
- n-gram models for re-scoring
- Experimental Results
 - Mean InfAP: 0.281
- Future work
 - Improving audio analysis
 - Introducing motion features for object tracking with deep CNNs

Motion features

- Our baseline system did not include any motion information
 - 5 visual (Har-SIFT, Hes-SIFT, Dense HOG, Dense LBP, and Dense SIFTH) + 1 audio features
- Tried to introduce Dense trajectories into our system
 - Probably effective for some actions / movements.
 ex.) "Running", "Swimming", "Throwing" and etc.
 - But unfortunately, we could not finish before the submission deadline.

Dense trajectories

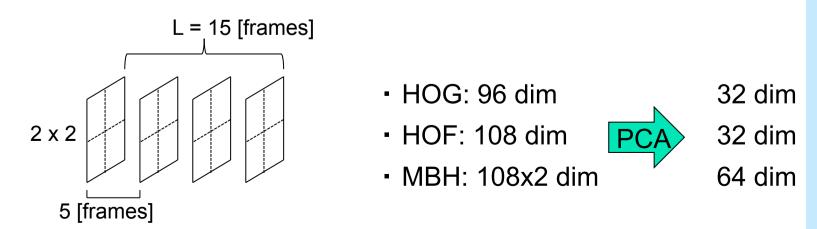
- 4 types of features were extracted from each shot
 - Trajectory (a sequence of displacement vectors)
 - HOG (Histogram of Oriented Gradient)
 - HOF (Histogram of Optical Flow)
 - MBH (Motion Boundary Histogram)

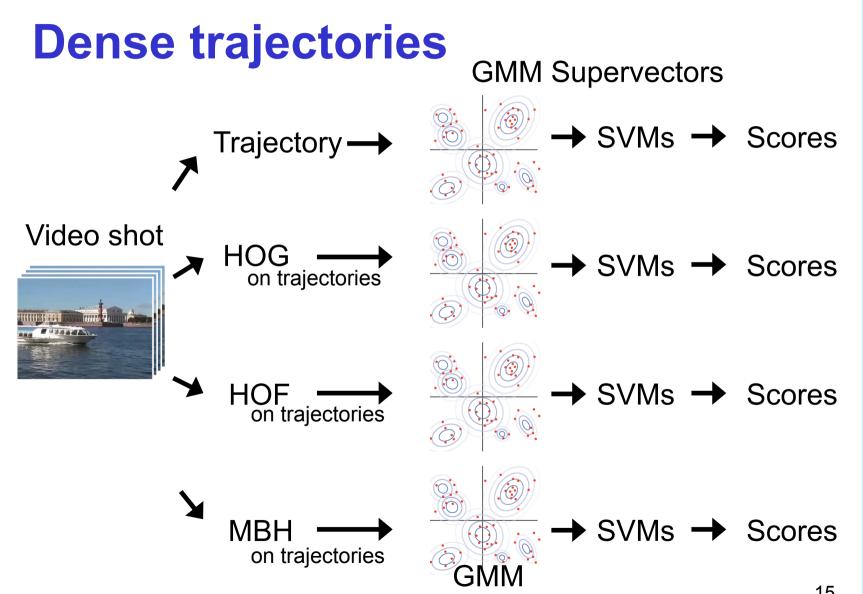
Dense trajectories

- Setting
 - Use every other frames
 - Trajectory length L=15
 - \rightarrow More than 30 frames are needed to extract features,

but about 40% of shots have less than 30 frames...

- Volume is subdivided into a spatio-temporal grid of size 2 x 2 x 3
- Orientations are quantized into 8 (or 9) bins.

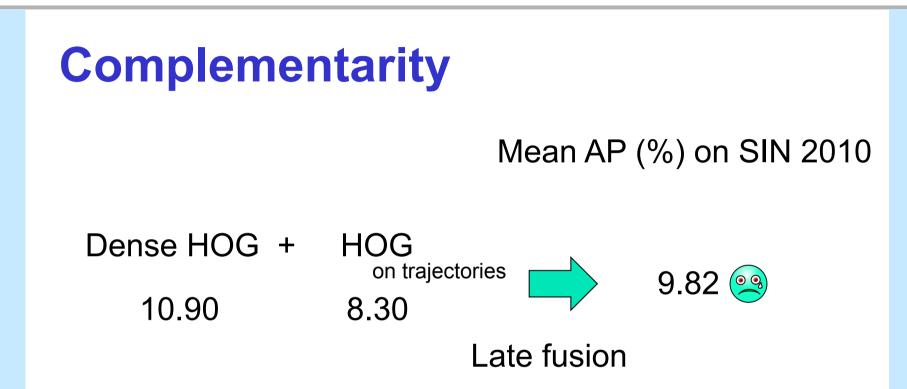




Performance of dense trajectories

Mean AP on SIN 2010

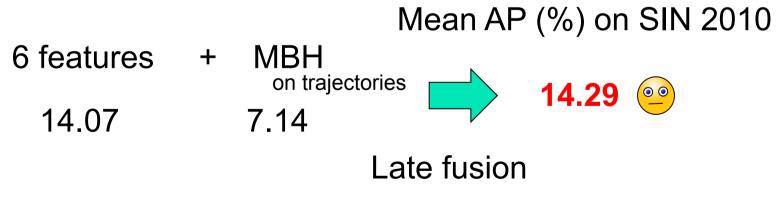
Method	MeanAP(%)
Baseline (6 features)	14.07
Trajectory	1.28
HOG on trajectories	8.30
HOF on trajectories	4.79
MBH on trajectories	7.14



We have not tried the fusion weight optimization, but
 Dense HOG and HOG on trajectories is not so complementary.

Complementarity

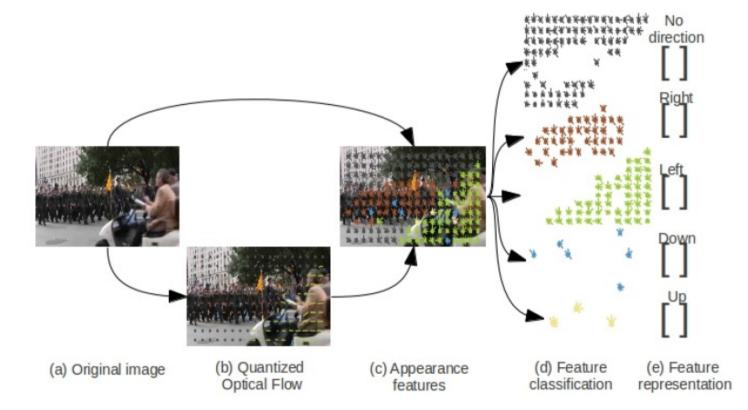
- HOF and MBH are different from other features.
- Finally, we could slightly improve mean AP by combining MBH with our baseline method.



(*) no fusion weight optimization

Future work

Adapt velocity pyramid to dense SIFT/HOG/LBP ...



Motion features with deep CNN