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 Semantic Query Generation (SQG)

– Given an event query, SQG translates the query 
description into a representation of semantic concepts

Event Query
(Attempting a Bike Trick)

SQG

< Objects >
• Bike 0.60
• Motorcycle 0.60
• Mountain bike 0.60
< Actions >
• Bike trick 1.00
• Ridding bike 0.62
• Flipping bike 0.61
< Scenes >
• Parking lot 0.01
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 Concept Bank

– Research collection (497 concepts)

– ImageNet ILSVRC’12 (1000 concepts)

– SIN’14 (346 concepts)
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 Event Search

– Ranking according to the SQ and concept responses

< Objects >
• Bike 0.60
• Motorcycle 0.60
• Mountain bike 0.60
< Actions >
• Bike trick 1.00
• Ridding bike 0.62
• Flipping bike 0.61
< Scenes >
• Parking lot 0.01

Semantic Query

Video Ranking
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 SQG Experiments

– Exact matching vs. WordNet/ConceptNet matching

– How many concepts are used to represent an event?

– To further improve the weighting:

 TF-IDF

 Term specificity
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 Exact matching vs. WordNet matching
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Insights
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Event 21: Attempting a bike trick

Trick
Wheel

Paddle wheel

Car wheel
Potter wheel

Person riding

Jumping
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Event 31: Beekeeping

Honeycomb (ImageNet)

Bee (ImageNet)

Bee house (ImageNet)
Cutting (research collection)

Cutting down tree (research collection)



Insights
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Event 23: Dog show

Brush dog (research collection)

Dog show (research collection)



 Improvements by TF-IDF and word specificity
Method MAP (on MED14-Test)

Exact Matching Only 0.0306

Exact Matching + TF 0.0420

Exact Matching + TFIDF 0.0495

Exact Matching + TFIDF + Word Specificity 0.0502
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Findings

1. Exact matching performs better than matching with 
WordNet and/or ConceptNet

2. Performance is even better by only retaining the top few 
exactly matched concepts

3. Adding both TF-IDF and Word Specificity increases 
performance



 Why ontology-based mapping would not work?
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 Why ontology-based mapping would not work?

Dog Show

Concept
“dog”

cat
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mammal
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animal

kit fox
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 Why ConceptNet mapping would not work?

Tailgating
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Findings

 It is difficult to

– harness the ontology-based mapping while constraining 
the mapping by event context



 In the Ad-Hoc event “Extinguishing a Fire”

– Key concepts are missing:

 Fire extinguisher

 Firefighter



Findings

 It is reasonable to

– Scale up the number of concepts, thus increasing the 
chance of exact matching



MED14-Eval-Full Results

 PS 000Ex

– Automatic semantic query generation and search

– Fusion of 0-Shot and OCR system

– Achieves the MAP of 5.2

 AH 000Ex

– System is the same as in PS 000Ex

– Achieves the MAP of 2.6

– Performance drops due to the lack of key concepts
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MER System

 In algorithm design, we aim to optimize
– Concept-to-event relevancy

– Evidence diversity

– Viewing time of evidential shots
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MER System

 In algorithm design, we aim to optimize
– Concept-to-event relevancy

 First, we require that candidate shots are relevant to the event;

 Second, we do concept-to-shot alignment.

– Evidence diversity
 In concept-to-shot alignment, we recount each shot with a unique concept 

different from other shots.

– Viewing time of evidential shots
 Select only the three most confident shots as key evidence

 Basically, each shot is in about 5 seconds
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 Key Evidence Localization

Extract keyframes uniformly 



 Key Evidence Localization

Concept Reponses

Apply concept detectors
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 Key Evidence Localization

Choose keyframes that are most relevant to this event

• All concepts in semantic query are taken into account by calculating 
the weighted sum

is  iwr



 Key Evidence Localization

Expand keyframes to shots



 Key Evidence Localization

The top 3 shots are selected as key evidences



 Key Evidence Localization

The rests are non-key evidences



 Concept-to-Shot Alignment

The top concept in the key evidence is selected as the representative concept
* We choose unique concept for each shot

< Objects >
• Bike
• Motorcycle
• Mountain bike
< Actions >
• Bike trick
• Ridding bike
• Flipping bike
< Scenes >
• Parking lot

Semantic Query

Key

Non-Key

Ridding bike
Bike trick
Bike

Bike trick
Bike
Ridding bike

Key

Key



MER14 Results

The percentage of strongly agree

(b) Event query quality(a) Evidence quality
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MER14 Results
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Summary

 0-Shot System

– The simple exact matching performs the best

– The quality of concepts selected to represent an event is 
more important than quantity

– It’s an open problem of how to harness the ontology-
based mapping



Summary

 MER System

– In key evidence localization, we emphasize the event 
relevancy first, then the hot concepts

– We recommend three shots as key evidences and each in 
about 5 seconds 



Thanks!


