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Outline
® 0-Shot System

— System Overview
— Findings
® MER System

— System Workflow
— Results
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Semantic Query Generation (SQG)

— Given an event query, SQG translates the query

description into a representation of semantic concepts
Semantic Query
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¢ Concept Bank
— Research collection (497 concepts)
— ImageNet ILSVRC’12 (1000 concepts)
— SIN’14 (346 concepts)
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e Event Search

— Ranking according to the SQ and concept responses

Semantic Query (
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Outline
® 0-Shot System

— Findings
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® SQG Experiments
— Exact matching vs. WordNet/ConceptNet matching
— How many concepts are used to represent an event?

— To further improve the weighting:
= TF-IDF
= Term specificity
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e Exact matching vs. WordNet matching
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e Amount of concepts used to represent event

Hit the best MAP
by only retaining
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Event 21: Attempting a bike trick
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Insights
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Insights
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e Improvements by TF-IDF and word specificity
Wethod | AP on MED1A-Test)_

Exact Matching Only 0.0306
Exact Matching + TF 0.0420
Exact Matching + TFIDF 0.0495
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Findings
1. Exact matching performs better than matching with
WordNet and/or ConceptNet

2. Performance is even better by only retaining the top few
exactly matched concepts

3. Adding both TF-IDF and Word Specificity increases
performance
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e Why ontology-based mapping would not work?

A sample query in TRECVID 2009

text words

“find shots of aircraft in sky” q

Semantic Airplane
mapping

Vehicle

Sky
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e Why ontology-based mapping would not work?
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e Why ConceptNet mapping would not work?

desires - -
tailgating *
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Findings
e |t is difficult to

— harness the ontology-based mapping while constraining
the mapping by event context
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¢ In the Ad-Hoc event “Extinguishing a Fire”

— Key concepts are missing:

= Fire extinguisher
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Findings
¢ It is reasonable to

— Scale up the number of concepts, thus increasing the
chance of exact matching
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MED14-Eval-Full Results
PS OOOEx

— Automatic semantic query generation and search
— Fusion of 0-Shot and OCR system
— Achieves the MAP of 5.2

AH 000Ex

— System is the same as in PS O00OEx
— Achieves the MAP of 2.6
— Performance drops due to the lack of key concepts
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Outline

® MER System
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MER System

¢ |n algorithm design, we aim to optimize
— Concept-to-event relevancy
— Evidence diversity
— Viewing time of evidential shots
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MER System

¢ |In algorithm design, we aim to optimize

— Concept-to-event relevancy
= First, we require that candidate shots are relevant to the event;
= Second, we do concept-to-shot alignment.

— Evidence diversity
— Viewing time of evidential shots
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MER System

¢ |n algorithm design, we aim to optimize

— Concept-to-event relevancy
= First, we require that candidate shots are relevant to the event;
= Second, we do concept-to-shot alignment.

— Evidence diversity

= |n concept-to-shot alignment, we recount each shot with a unique concept
different from other shots.

— Viewing time of evidential shots
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MER System

In algorithm design, we aim to optimize

— Concept-to-event relevancy
= First, we require that candidate shots are relevant to the event;
= Second, we do concept-to-shot alignment.

— Evidence diversity

= |n concept-to-shot alignment, we recount each shot with a unique concept
different from other shots.

— Viewing time of evidential shots
= Select only the three most confident shots as key evidence
= Basically, each shot is in about 5 seconds
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Outline

® MER System
— System Workflow
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e Key Evidence Localization

Extract keyframes uniformly
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e Key Evidence Localization

Concept Reponses
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e Key Evidence Localization

I l |

Choose keyframes that are most relevant to this event

* All concepts in semantic query are taken into account by calculating
the weighted sum S, = WI.
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e Key Evidence Localization
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e Key Evidence Localization
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The top 3 shots are selected as key evidences
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e Key Evidence Localization
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Semantic Query

e Concept-to-Shot Alighment g \
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The top concept in the key evidence is selected as the representative concept
* We choose unique concept for each shot
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MER14 Results
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Summary

® 0-Shot System
— The simple exact matching performs the best

— The quality of concepts selected to represent an event is
more important than quantity

— It’s an open problem of how to harness the ontology-
based mapping
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Summary
* MER System

— In key evidence localization, we emphasize the event
relevancy first, then the hot concepts

— We recommend three shots as key evidences and each in
about 5 seconds
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