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Abstract—For the SIN task, we have submitted the following
three runs:

1) 2C M D siegen kobe nict.15 1: This run uses the Convolu-
tional Neural Network (CNN) trained on ImageNet dataset.
For each shot, a feature is extracted as outputs of the
fifth, sixth or seventh layer in the CNN. SIN is carried out
by linearly fusing SVMs each of which is trained on one
feature using IACC.1.tv10.training and IACC.1.A-C.

2) 2C M D siegen kobe nict.15 2: To examine the effective-
ness of the above fusion approach, this run performs
SIN only using an SVM which is trained on the feature
corresponding to outputs of the sixth layer in the CNN.

3) 2C M D siegen kobe nict.15 3: We attempt to use the
motion information in the video obtained by a separated
Deep Neural Network (DNN) with Motion Receptive Field
(MRF) inputs. The motion information is extracted as a
900-dimensional vector, and combined with the feature
corresponding to outputs of the sixth layer in the CNN.
SIN is examined by an SVM with the feature vector.

Results by these runs indicate that we could achieve a reasonable
performance only using image-based features (the CNN is applied
to video frames independently), but could not use motion infor-
mation effectively. Moreover, other types of features like audio
are necessary for accurate concept detection.

For the MED task, we have submitted the following five runs:
1) SiegenKobeNict MED15 MED15EvalSub PS 10Ex SML p-

svm10 1: Each video is divided into shots for which 346
concepts defined in SIN and 1000 objects defined in
ImageNet are detected. The video is then represented
as a 1346-dimensional vector by max-pooling of 1346
concepts/objects detection results over shots. Based on
this, an event is detected by building an SVM using 10
example videos and background training videos.

2) SiegenKobeNict MED15 MED15EvalSub PS 100Ex SML c-
svm100 1: This run is the same to the above one except
that 100 example videos are used.

3) SiegenKobeNict MED15 MED15EvalSub PS 100Ex SML c-
hcrfseq100 1: To discriminate between relevant and
irrelevant shots to an event and consider their temporal
structures, this runs builds a Hidden Conditional Random
Field (HCRF) using 100 example videos and background
training videos. Each shot is assigned to a hidden state
representing the relevance to the event by considering the
hidden state assigned to the previous shot. The occurrence
of the event is examined based on the assignment of
hidden states to shots in the video.

4) SiegenKobeNict MED15 MED15EvalSub PS 100Ex SML c-
hcrftree100 1: To treat long-range temporal structures of

shots, this run constructs an HCRF by representing a
video as a tree structure, where shots are hierarchically
merged into nodes based on their visual similarities and
temporal distances. That is, nodes express shot sequences
with different time lengths.

5) SiegenKobeNict MED15 MED15EvalSub PS 100Ex SML c-
svm-hcrftree100 1: This run fuses the second and fourth
runs by simply averaging outputs by them.

Although we validated the effectiveness of using tree structures,
at present, non-linear SVMs based on max-pooling outperform
HCRFs due to the low discrimination power of hidden states
characterised by linear functions.

I. INTRODUCTION

TREC Video Retrieval Evaluation (TRECVID) is an annual
worldwide competition where large-scale benchmark video
data are used to evaluate methods developed all over the
world [1]. At TRECVID 2015 [2], we participated in the
Semantic INdexing (SIN) task where methods for detecting
concepts like Airplane, Boat Ship and Computers in shots
are evaluated, and the Multimedia Event Detection (MED)
task where the assessment addresses methods which identify
videos containing certain events like “Bike trick”, “Marriage
proposal” and “Beekeeping”. This paper presents our methods
developed for the SIN and MED tasks.

For the SIN task, our purpose is to examine the effectiveness
of deep learning which constructs a feature hierarchy with
higher-level features formed by the composition of lower-level
ones [3], [4]. Traditional hand-crafted features like SIFT and
HOG are insufficient for representing diverse visual appear-
ances. The reason is that these are built upon pre-specified
representations which are not necessarily optimal to represent
various visual appearances. Thus, much research attention has
recently put on feature learning (or representation learning)
to extract useful features from data [3], and deep learning is
the most representative approach. One big advantage of deep
learning is its discrimination power. A feature hierarchy can
represent up to O(2N ) visual appearances only using O(N)
parameters [3]. Intuitively, the discrimination power of features
at one layer is exponentially increased based on numerous
combinations of features at the previous layer. Based on
such feature hierarchies, deep learning has showed remarkable



performance improvements on several worldwide competitions
on image, video and audio classification [4], [5], [6].

We use a feature hierarchy represented by a Convolutional
Neural Network (CNN) which is built on 1.2 million training
images in ImageNet dataset [7]. Since each layer in the CNN
represents a distinct abstraction of (a video frame in) a shot, we
consider that the performance of concept detection is improved
by using multiple features derived from different layers. Based
on this idea, we compute the following three features for the
shot: The first, second and third features consist of neuron
outputs at the fifth, sixth and seventh layers in the CNN,
respectively. Then, a concept is detected by fusing SVMs each
of which is built on one feature. Moreover, we also compute
another feature vector for motion information by a separate
deep neural network. The network has a similar structure
to ‘Google Brain’ [8], and spontaneously obtains the motion
related features with unsupervised learning rule. We combine
the motion feature vector with the feature vector of the CNN,
and detect a concepts with a SVM.

For the MED task, we focus on the following two problems:
The first is the weakly supervised setting where each training
video is annotated only with the occurrence or absence of
an event, despite the fact that this video may include several
semantically different shots [9]. For simplicity, we call training
videos annotated with the occurrence of the event and those
annotated with its absence positive videos and negative videos,
respectively. In particular, because of the weakly supervised
setting, positive videos include several irrelevant shots to the
event. For example, while shots showing kissing and hugging
are relevant to the event “marriage proposal”, shots displaying
conversation and surrounding situations are included in pos-
itive videos for this event. Such irrelevant shots clearly have
adverse influences on building a classifier which can accurately
identify videos where the event occurs. Hence, we need to
analyse training videos to discriminate between relevant and
irrelevant shots to the event.

The second problem is the extraction of temporal structures
of an event. For example, for the event “marriage proposal”, a
shot where a man and woman are talking to each other is often
followed by a shot where they are hugging. Such temporal
structures are useful for disambiguating the event presented
in a video. However, we target ‘unconstrained’ videos where
shots are taken by any camera technique and connected by
any editing technique. As a result, videos where the event
occurs do not show apparent temporal structures. For the
event “marriage proposal”, in one video the conversation and
hugging of a man and woman are presented in two consecutive
shots, while in another video they are separated by additional
shots like a shot where a man gives a ring to a woman,
and a shot showing the surrounding situation. To effectively
mine temporal structures from unconstrained videos, we need
to examine shots and shot sequences in different temporal
abstraction levels. For the above example, we aim to extract
a temporal structure where a shot sequence including the
conversation between a man and woman is followed by the
one including their hugging.

To address the weakly supervised setting and temporal
structure extraction, we firstly use time-constrained shot clus-
tering method [10] to represent a video as a tree struc-
ture where nodes express shot sequences with different time
lengths. Then, given positive and negative videos for an event,
our method constructs a Hidden Conditional Random Field
(HCRF) which is a probabilistic discriminative classifier with
a set of hidden states [11]. Here, the occurrence of the event in
a video is predicted by assigning nodes in the tree structure to
hidden states. In other words, the weakly supervised setting
is handled using hidden states as the intermediate layer to
discriminate between relevant and irrelevant nodes (i.e., shot
sequences) to the event. In addition, transitions among hidden
states indicate temporal structures specific to the event. To
examine the effectiveness of the above-mentioned approach,
we compare it to an SVM which has no mechanism to dis-
criminate between relevant and irrelevant shots, and an HCRF
which assigns shots to hidden states without considering their
temporal abstraction into nodes [9].

II. SEMANTIC INDEXING

Fig. 1 illustrates an overview of three types of SIN methods
that we have examined. All of three use the output of a
Convolutional Neural Network (CNN).

For the first two methods, we only use static image infor-
mation in a video. In order to utilise recent progress of deep
neural network, we employed ’Caffe’ which is one of the most
popular CNN framework developed by Berkeley Vision and
Learning Centre [4], and use the reference model accompa-
nying with it. The discrimination style of the reference model
is based on the output category of the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC), and is different from
60 SIN concepts. For remapping ILSVRC 1000 concepts to
SIN concepts, we apply SVM to the neural output of the fifth,
sixth and seventh layers, which are 4096-, 4096- and 1000-
dimensional vectors, respectively. In order to merge several
types of learning representation effectively, we also perform
’linear fusion’ which unifies SVM results of three layers with
optimized weights for each SIN concept.

For the third method, we attempt to utilise the motion
information in addition to the static information of the video.
We prepare another deep neural network which processes
only motion information in a video. The network consists
four layers and is trained by unsupervised learning. It outputs
900-dimensional feature vectors which expresses a learning
representation of short term motion information of a scene in
a video. The feature vector of the motion network is combined
with the output vector from sixth layer of CNN, and is applied
to SVM.

A. Methods

1) Middle layer output for static image vectors: This method
uses SVM to the neural output in a middle layer of CNN
which trained with a huge amount of static images beforehand,
and performs the discrimination of SIN concepts in a video.
We use ’Caffe’ for the framework of CNN, and BVLC
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Fig. 1. An overview of our three SIN methods. ’T-Pooling’ means temporally max-pooling.

reference model for the pre-trained network model [4]. The
model consists of 650,000 neurons, 60,000,000 parameters,
630,000,000 connections (Fig. 2), and is trained with 310,000
iterations of 1,200,000 images in ImageNet.

Input Image
Layer 5

Layer 6 Layer 7

Fig. 2. An overview of the structure of the Convolutional Neural Network
(CNN). Modified from Krizhevsky et al., 2012 [4].

We use OpenCV (version 3.0) to extract a single frame from
a video [12]. Frames are captured every one second in the
video, and an additional frame is captured at the centre of the
shot to stabilise the discrimination performance for shots with
short duration. Each extracted frame is resized to 227x227
pixel and applied to CNN. We use the standard mean image
of the reference model for the normalisation of the image. The
neural outputs of the fifth, sixth and seventh layers which have
4096, 4096, 1000 dimension are retrieved for each frame. The
sequence of the vectors is merged with temporal max-pooling,
resulting in 4096, 4096, 1000 dimensional feature vectors for
each shot. SVMs are trained for each feature vector and SIN
concept with IACC.1.tv10.training and IACC.1.A-C datasets.
We use two types of SVMs: one is libsvm [13], and the other is
originally implemented SVM coded by C and MATLAB [16].
We scaled the training data from -1 to 1 for libsvm, but do
not scaled it for the originally implemented SVM. We use the
probability estimates of the SVM for concept discrimination,
and select top 2000 shots for each concept.

2) Motion feature vectors: In the previous section, we only
use temporally static features in a video. However, those
features have no enough information to distinguish a concept
which highly depends on detailed motion information. To
tackle the problem, we attempt to use motion information
involved in a temporal sequence of video frames. Since the
motion information is processed on a separate information
pathway from the static images in the real human brain [14],
we prepared an deep neural network separated from the CNN

which only processes the temporally static visual information.
The network is constituted of many Self Organizing Maps
(SOMs) [15] which involve 100 neurons, enabling to form
the learning representation for complex motions in a video
by unsupervised learning. The layers consist of 91, 49, 25
and 9 SOMs, and each SOM receives 9 SOMs which are
located spatially neighboured in the previous layer, resulting
in 16,400 neurons and 7,988,400 connections (Fig. 3). The
network is implemented by a custom C code with OpenMP
multi threading, and python interface scripts.

Output

7x7 maps

9x9 maps

1x1 map

3x3 maps

5x5 maps

Fig. 3. An overview of the structure of deep neural network for motion
detection. Each small rectangle means an SOM involving 100 neurons.

A frame captured from a video is firstly converted to
grayscale, then applied to Laplacian filter. The filtered image is
shrunk to 160x120 pixels, cropped 90x90 pixels on the centre
region and extracted 9x9 sets of sub-region images with 8x8
pixels. For each sub-region image, temporally successive three
images are combined, and form motion representing matrix
which represents local motion characteristics with 8x8x3 di-
mension. The training has two stages: the first stage is local
level training with motion representing matrix only in the first
layer of the network, and the second stage is network level
training using learning representation of motion obtained by
the first stage. In the first stage, a single layer SOM is trained
by normal SOM learning rule (traditional competitive learning
rule) with 1,000,000 motion representing matrix which is
randomly sampled from IACC.1.A-C for training data. As a
result, motion receptive field (MRF) is organised as the weight
matrix of the SOM (Fig. 4).

In the second stage, we use the weight of MRF to initial
weight of the all SOMs in the first layer, and train whole
DNN with SOM-based unsupervised learning. The training
is performed with 5,000,000 sequence sets which have three
frames and randomly sampled from IACC.1.A-C. The 900-



Fig. 4. Motion Receptive Field obtained by initial unsupervised learning.
Red, green, and blue colour represent the receptive field of the temporally
successed first, second, and third frame respectively.

dimensional vector is combined with the output of sixth layer
of CNN, resulting 4996-dimensional feature vector. SVM is
applied in the same way as static images.

B. Results

Using IACC.2.C video dataset, we first examine whether
our basic method which uses CNN, temporal max-pooling
and SVM could work for the detection of SIN concepts.
Fig. 5 shows the performance comparison among the results
using outputs of layer 5, 6 and 7, respectively. The result
shows the optimal layer is different among respective concepts.
Thus, we perform a ’linear fusion’ to unify the effective
information among outputs of three layers. The result of
the linear fusion exhibit better discrimination performance
among all concepts than the result of any other single layer.
We use the result of the linear fusion as our primary result
(2C M D siegen kobe nict.15 1). On the other hand, we use
the result which uses only the sixth layer as the baseline of our
runs 2C M D siegen kobe nict.15 2. Although the result of
the linear fusion improved the robustness of the discrimination,
the improvement is not so intensive in comparison to our
previous ’Fusion’ study [16]. It may be due to the fact that
outputs from three layers contain almost the same information
because the outputs of later layer is linear transformation of
the earlier layer. Thus, other types of features like motion and
audio are necessary for more accurate concept detection.

Fig. 6 presents the performance comparison between our
primary run 2C M D siegen kobe nict.15 1 and other meth-
ods developed on IACC.2.C video dataset. In Fig. 6, each
method is represented by a bar depicting its MAP. Actually,
we have took a fatal mistake for the SIN submission, and
the submitted results are totally valueless. The MAPs of
mistaken runs are indicated by yellow bars, representing quite

low MAPs. Our corrected primary result, which corresponds
to 2C M D siegen kobe nict.15 1, is coloured by red. The
result is better than our mistaken one. However, it indicates
that there is much room for improving our SIN method.

Fig. 7 shows the effect of the usage of motion information
for the detecting SIN concepts. The detection result with
the motion information delivered from the separated deep
neural network is coloured in blue, which corresponds our
run 2C M D siegen kobe nict.15 3. The result without the
motion information which uses the same SVM and parame-
ters is coloured in green. Although those results indicate no
significance improvement by the usage of motion information
on the total result, there is a certain amount improvement in
some concepts (38: Dancing, 41: Demonstration Or Protest,
95: Press Conference, 478: Traffic). A common feature of
those concepts is a vast amount of motions all over the
frame, meaning that our method could retrieve some but very
limited motion information. Actually, the MRF which we use
in the run has very limited spatial and temporal characteristics
(Fig 4). More variation of those characteristics in the MRF,
and related network implementation might be required for the
effective usage of the motion information.

III. MULTIMEDIA EVENT DETECTION

Fig. 8 illustrates an overview of three types of MED
methods that we have developed. First of all, an event is
‘highly-abstracted’ in the sense that various objects interact
with each other in different situations. In consequence, visual
appearances of videos where the event occurs have got a
huge variance in the space of low-level features like colour,
edge, and motion. Hence, we adopt a concept-based approach
which uses detection results of concepts as features to detect
the event [17]. Compared to the space of low-level features
where each dimension just represents the physical value of a
shot, in the space of concept detection results, each dimension
represents the appearance of a human-perceivable meaning.
Thus, the variation of videos containing the event becomes
smaller and can be modelled more easily.

We detect concepts in each shot in a video where shot
boundaries are detected as significant differences of colour
histograms between two consecutive video frames. In Fig. 8, a
shot is represented by one video frame and arranged from front
to back based on its shot ID. Then, we detect 346 concepts in
each shot using the method described in the previous section.
In addition, since our concept-based approach defines an event
based on appearances of concepts, it is important to use a
rich concept vocabulary to cover a variety of events. Thus,
to enlarge the concept vocabulary, we use 1000 objects (e.g.,
Castle, Car Wheel and Bee) which are defined in ImageNet
dataset and can be detected by the CNN in the previous
section [7]. For simplicity, we do not distinguish these 1000
objects from the above 346 concepts, and term both of
them just as ‘concepts’. That is, we detect 1346 concepts
in each shot. This leads to represent the shot as a 1346-
dimensional vector where each dimension has a ‘detection
score’ representing a scoring value between 0 and 1 in terms



Fig. 5. Performance comparison among layer 5, 6, 7, and fusion.

Fig. 6. Performance comparison between 2C M D siegen kobe nict.15 1 and the other methods for SIN. The red bar shows our corrected primary result,
and yellow bars show submitted our three results.
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Fig. 8. An overview of our three MED methods.

of the appearance of one concept. A larger detection score
indicates more likelihood that the concept appears in the
shot. By sequentially aggregating such vectors of detection
scores, we represent a video as a multi-dimensional sequence

as depicted in Fig. 8. Below, based on this representation, we
present our three MED methods shown in the right side of
Fig. 8.

A. Methods

1) SVM based on video-level vectors: We represent each
video as a ‘video-level vector’ by performing max-pooling
on detection scores of shots. That is, each dimension in this
vector represents the maximum detection score for a concept
over shots in the video. Based on this vector representation, we
build the following two types of SVMs using example videos
as positive, and near-miss and background training videos as
negative: The first is a linear SVM SVM linear. Note that
HCRF-based approached described below use hidden states
characterised by linear combinations of concept detection
scores. Hence, we use SVM linear as the baseline to evaluate
improvements by HCRF-based approaches which precisely
handle shot sequences and their temporal structures in a video.
Also, the performance of non-linear SVMs is generally higher
than that of linear ones. Thus, in order to investigate their
performance difference, we build SVM rbf which is a non-
linear SVM using RBF kernel.

2) HCRF based on multi-dimensional sequences: We
present an HCRF HCRF seq for videos represented as multi-
dimensional sequences [9]. That is, HCRF seq only targets
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Fig. 7. Performance comparison between theresult with and without motion information supplied from the separate DNN only for motion.

temporal structures of shots and does not count the ones of shot
sequences. HCRF seq is characterised by a set of hidden states
H. Each hidden state h ∈ H has the following three types
of parameters: The first is the ‘label relevance’ θlabel(y, h)
representing the relevance of h to the occurrence of an event
y = 1 or its absence y = 0. The second type of parameter
is the ‘weight vector’ θweight(h) where each dimension in-
dicates the weight of a concept. That is, θweight(h) signifies
characteristic concepts of h. The last type of parameter is the
‘transition relevance’ θtrans(y, h, h

′) indicating the relevance
of transition from h to another state h′ conditioned on y = 1 or
y = 0. To sum up, θlabel(y, h) is used to discriminate between
relevant and irrelevant shots under the weakly supervised
setting, while θtrans(y, h, h

′) characterises temporal structures
of shots for the event. In addition, θweight(h) is used to check
the suitability of assigning h to a shot.

We explain how HCRF seq estimates the occurrence of an
event based on the multi-dimensional sequence of a video x =
(x1,x2, · · · ,xM )

T. Here, the j-th shot xj (1 ≤ j ≤ M ) is
represented as a C-dimensional vector (xj,1, . . . , xj,C)

T (i.e.,
C = 1346), and xi,c (1 ≤ c ≤ C) represents the c-th concept
detection score for xj . Let h(x) = (h(x1), · · · , h(xM ))

T be
a sequence of hidden states assigned to M shots in x. That is,
h(xj) denotes the hidden state assigned to xj . Assuming the
event occurrence (y = 1) or absence (y = 0), this assignment
is evaluated as follows:

Ψ(y,h(x),x;θ) =

M∑
j=1

θlabel(y, h(xj)) (1)

+

NM∑
j=1

xj · θweight(h(xj)) +

M∑
j=2

θtrans(y, h(xj−1), h(xj)),

where θ is the whole set of parameters of all hidden states.
The first term is the sum of label relevances of hidden states
assigned to all shots, and represents the overall relevance of
these states to y = 1 or y = 0. The second term accumulates
the product between xj and θweight(h(xj)), and indicates the
overall degree of how much shots match with assigned hidden

states. The last term sums transition relevances and represents
how relevant transitions of hidden states in h(x) are to y = 1
or y = 0. Assuming that h(x) is appropriately selected for
each training video, θ should be optimised so that Ψ(y =
1,h(x),x;θ) is large for positive videos, while for negative
ones Ψ(y = 0,h(x),x;θ) is large.

The optimisation of θ is based on the following conditional
probability of y given x [11]:

P (y|x,θ) =
∑

∀h(x)∈H

P (y,h(x)|x,θ) (2)

=

∑
∀h(x)∈H

eΨ(y,h(x),x;θ)

∑
∀y′∈Y;∀h(x)∈H

eΨ(y′,h(x),x;θ)
. (3)

Equation (2) indicates that h(x) is marginalised out by taking
the sum of P (y,h(x)|x,θ)s over all possible instances of
h(x) (i.e., all possible assignments of hidden states to x).
Equation (2) is further transformed into Equation (3), where
the numerator with the fixed y is normalised by the denomi-
nator taking the sum of numerators with all y′ ∈ {0, 1}. Thus,
Equation (3) can be considered as a conditional probability.

Suppose N training videos where the i-th training video
x(i) is annotated with the event label y(i) = 1 if it is positive,
otherwise y(i) = 0. We estimate θ which maximises the
following log-likelihood based on conditional probabilities for
x(i) and y(j):

L(θ) =

N∑
i=1

logP (y(i)|x(i),θ)− ||θ||
2

2σ2
, (4)

where the second term is the L2 regularisation term and useful
for preventing θ from being overfit to training videos. The
optimal θ∗ is estimated by a gradient ascent method based on
the derivative of Equation (4) in terms of each parameter in
θ [11]. Finally, using θ∗, the relevance score of a test video
x is computed as the conditional probability of y = 1 for x,
that is, P (y = 1|x,θ∗) based on Equation (2).



3) HCRF based on Tree Structures: Compared to
HCRF seq based on multi-dimensional sequences, this HCRF
HCRF tree uses tree structures of videos in order to flexibly
examine temporal structures in different abstraction levels.
The tree structure of a video is extracted by time-constrained
shot clustering which is an extended version of bottom-up
clustering [10]. Here, shots in the video are iteratively merged
into nodes (i.e., shot sequences) based on similarities in terms
of their vectors of concept detection score and temporal dis-
tances. Specifically, we represent the tree structure of a video
x as a set of nodes N . Our time-constrained shot clustering
method initialises N as empty and gradually enlarges it by
adding nodes that will be extracted at the subsequent iterations.
Since the tree structure can be easily constructed by checking
inclusion relations among nodes in N , we omit these relations.
Our method starts with assigning each shot xi to a node ni
and adding it to N . Using this N , we initialise a similarity
matrix S where each element represents the similarity between
two nodes. Afterwards, the most similar pair of nodes n̂1 and
n̂2 are selected based on S, and merged into a new node n̂.
According to this, S is updated by removing elements for n̂1

and n̂2 and adding those for n̂. The selection and merge of
the most similar nodes and the update of S are iterated until
the size of S becomes 1× 1. Below, we closely describe the
above-mentioned processes.

For the initialisation of S, it is only required to com-
pute the similarity between two shots x1 and x2 because
each node consists only of a single shot. We define this
similarity Sim(x1,x2) by considering their visual similarity
Simvis(x1,x2) and temporal distance TP(x1,x2):

Sim(x1,x2) =
1

TP(x1,x2)
∗ Simvis(x1,x2), (5)

where x1 and x2 are represented by vectors of detection scores
for 1346 concepts, and Simvis(x1,x2) is computed as their
cosine similarity. For TP(x1,x2), we consider the temporal
locality of contents in a video [10]. Since contents in the
video are sequentially developed shot by shot, two temporally
distant shots do not have strong semantic relation even if they
are visually very similar. In other words, many other contents
should be presented between these shots, so viewers cannot
consider them as semantically-related. The temporal locality is
used so that Simvis(x1,x2) is reduced based on TP(x1,x2)
representing the temporal distance between x1 and x2.

Using S initialised above, we select the most similar pair of
nodes n̂1 and n̂2 and merge them into a new node n̂. At this
point, n̂1 and n̂2 may not be temporally continuous. That is,
some nodes (i.e., shot sequences) may exist between n̂1 and
n̂2. Considering the sequential development of contents in a
video, it is natural to merge all of n̂1, n̂2 and nodes between
them into n̂. Then, we update S by removing elements for
these merged nodes, and adding elements for n̂ where its
similarity to each non-merged node n is the maximum among
similarities between n and the merged nodes. This update
assumes that a viewer tends to connect two shot sequences
if he/she finds that a shot in one sequence is related to

a shot in the other. In other words, the viewer does not
remember several shots in these shot sequences to deduce
their connection. Also, the update of S is computationally
efficient because we can re-use similarities computed at the
initialisation. This means that the similarity between two
nodes is the maximum among similarities computed for shots
included in those nodes. Finally, the tree structure of a video
is constructed by checking merge records of nodes in N .

The application of an HCRF to tree structures only requires
two modifications on Equation (1). The first is that when
assigning a node n ∈ N to a hidden state h ∈ H, we need its
vector representation to compute the suitability of assigning n
to h based on θweight(h). We define the vector representation
by performing max-pooling over shots contained in n. The sec-
ond modification is the computation of transition relevances.
For this, we can translate the transition from h(xj−1) to h(xj)
in Equation (1) into the transition from the hidden state for a
parent node to the one for a child node. The HCRF can be
trained and tested without any other modification.

B. Results

Using MED14-Test video dataset [18], we first examine
whether HCRF-based approaches (HCRF seq and HCRF tree)
can appropriately handle the weakly supervised setting and
temporal structures, compared to SVM-based approaches
based on video-level vectors (SVM linear and SVM rbf ). For
all of these four methods, each event is detected using 100
example videos as positive, and near-miss and background
training videos as negative. Fig 9 shows their performance
comparison. For each event, the first, second, third and fourth
bars from the left indicate APs of SVM linear, HCRF seq,
HCRF tree and SVM rbf , respectively. As can be seen from
Fig 9, HCRF seq and HCRF tree outperforms the baseline
SVM linear. This means that HCRF-based approaches which
precisely model shots (or shot sequences) in a video appro-
priately discriminate between relevant and irrelevant shots to
an event and exploit their temporal structures. In particular,
HCRF tree is superior to HCRF seq, indicating the effective-
ness of tree structures for flexibly examining shot sequences
with different time lengths. However, HCRF-based approaches
are outperformed by SVM rbf . This suggests the insufficient
discrimination power of hidden states which linearly combine
concept detection scores, compared to non-linear functions.
Thus, we plan to enhance hidden states by adopting non-linear
functions.

Fig. 10 shows the performance comparison between
our primary run SiegenKobeNict MED15 MED15EvalSub PS

10Ex SML p-svm10 1 and the other methods developed on
MED15EvalSub video dataset. Our primary run is imple-
mented as SVM rbf which uses 10 example videos as positive,
and near-miss and background training videos as negative. In
Fig. 10, each method is represented by a bar depicting its MAP.
The MAP of our method is coloured by red and indicated by
the arrow. In addition, the first, third, fourth and fifth methods
coloured by green use much larger computational resources
(about 1000 CPU cores and 10000 GPU cores) than the other
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Fig. 9. Performance comparison among SVM linear, HCRF seq, HCRF tree and SVM rbf on MED14-Test video datasets.

methods (using about 100 CPU cores and 1000 GPU cores).
Fig. 10 indicates that there is much room for improving our
MED method.
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Fig. 10. Performance comparison between SiegenKobeNict MED15
MED15EvalSub PS 10Ex SML p-svm10 1 and the other methods on

MED15EvalSub video dataset.

Table I presents the performance comparison among our
submitted runs. The correspondence between these runs and
methods explained above is as follows:
1. p-svm10 submitted as SiegenKobeNict MED15 MED15Eval
Sub PS 10Ex SML p-svm10 1 is implemented as SVM rbf

using 10 example videos as positive, and near-miss and
background training videos as negative.
2. c-hcrfseq100 submitted as SiegenKobeNict MED15
MED15EvalSub PS 100Ex SML c-svm100 1 is imple

-mented as HCRF seq using 100 example videos as positive,
and near-miss and background training videos as negative (all
the following runs use the same training videos).
3. c-hcrftree100 submitted as SiegenKobeNict MED15

MED15EvalSub PS 100Ex SML c-hcrftree100 1 is imple
-mented as HCRF tree.
4. c-svm100 submitted as SiegenKobeNict MED15
MED15EvalSub PS 100Ex SML c-svm100 1 is imple

-mented as SVM rbf .
5. c-svm-hcrftree100 submitted as SiegenKobeNict MED15

MED15EvalSub PS 100Ex SML c-svm-hcrftree100 1
simply takes averages of outputs by c-svm100 and c-
hcrftree100.

TABLE I
PERFORMANCE COMPARISON AMONG OUR SUBMITTED RESULTS ON

MED15EVALSUB VIDEO DATASET.

p-svm10 c-hcrfseq100 c-hcrftree100 c-svm100 c-svm-hcrftree100

0.110 0.157 0.155 0.217 0.206

In Table I, c-hcrftree100 is slightly outperformed by c-
hcrfseq100. But, considering the advantage of the former over
the latter in Fig. 9, it is still valid that tree structures are useful
for capturing temporal structures by flexibly examining shot
sequences with different time lengths. Also, similar to Fig. 9,
the performance of c-svm100 (i.e., non-linear SVM) is the
best. This confirms the necessity of enhancing hidden states
in HCRFs with non-linear functions.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented methods that we developed for
the SIN and MED tasks. For the SIN task, we apply CNN
to a video discrimination task with temporal max-pooling and
linear fusion among information from three CNN layers. Tem-
poral max-pooling uses temporal sparseness and independence
of the feature vector, and effectively extracts the concept in
a video, resulting good discrimination results. Moreover, the
linear fusion successfully unifies image information which
distributes among layers with various learning representation,
and enhances the discrimination results sufficiently, However,
since the unified information is originated from the same feed-
forward network, the improvements is moderate. To address
the problem, we also try to apply a motion feature vector from
the motion specific deep neural network, combined with the
outputs of CNN. The network output trained by unsupervised
learning improved the discrimination results in some types
concept, but no significant difference among overall concepts.
To improve the effectiveness of the motion information, we
will treat a network with more diverted types of MRF and/or
semi-supervised learning related to moving objects.

For the MED task, we addressed the weakly supervised
setting and the extraction of temporal structures. To manage
these, we developed an MED method which builds an HCRF
on videos represented as tree structures. The tree structure
of a video facilitates flexibly examining shot sequences in



different abstraction levels, and hidden states in the HCRF
work as the intermediate layer to discriminate between relevant
and irrelevant shot sequences to an event. Our experimental
results showed that although the effectiveness of our HCRF-
based method has validated in comparison to the baseline
method (linear SVM), its performance based on hidden states
characterised by linear functions is inferior to the one of non-
linear SVM. To overcome this, we will develop an HCRF
where each hidden state is characterised by a non-linear
function based on a Multi Layer Perceptron (MLP) [19].
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