Introduction

•What we did? We present a novel videobased object localization system based on R-CNN (Regions with CNN features).

•Main Contributions: We propose the region trajectory algorithm which can keep tracking possible object regions while pruning false detections.

Results: Our system ranks

- First in the temporal measurement.
- **Third** in the spatial measurement.

Task Description

Determine the presence of the concept temporally within the shot.

•For each frame that contains the concept, locate a bounding rectangle spatially.

Challenges

•How to locate object bounding box on each frame accurately?

•How to extend image-based object detection algorithms into the temporal dimension?

Our solution:

Regions with Convolutional Neural Network Features

Region Trajectory algorithm

CCNY at TRECVID 2015: Localization Yuancheng Ye¹, Xuejian Rong², Xiaodong Yang³, and YingLi Tian^{1,2} ¹Graduate Center and ²City College, City University of New York ³NVIDIA Research

 $ratio = \frac{number\ of\ regions\ detected\ by\ R-CNN}{1}$ total number of regions in the trajectory

Evaluation Metrics

•Computing units are frames (temporally) Precision, Recall and F-Score are calculated based and pixels (spatially). on temporal and spatial results respectively.

• Averages are computed for values of each concept.

 $F\text{-}Score = \frac{2 \times Precision \times Recall}{Precision + Recall}$

Experiments

Testing Concepts

1003 Airplane	1005 Anchorperson	1015 Boat_ship	1017 Bridges
1019 Bus	1031 Computers	1080 Motorcycle	1117 Telephones
1261 Flags	1392 Quadruped		

Auxiliary Data

AlexNet model is pre-trained on the PASCAL VOC 2007 dataset.

GoogLeNet model is pre-trained on the ILSVRC12 dataset.

Data Statistics

	1003	1005	1015	1017	1019	1031	1080	1117	1261	1392
Positive frames	710	3482	7055	1380	860	4111	1835	3272	8429	6315
Negative frames	548	0	4156	1537	2288	0	2036	2064	3156	8595
Test frames	7047	14119	5874	6054	4774	15814	4165	5851	19092	13949

Results:

Run	iframe_fscore	mean_pixel_fscore
1	0.7447	0.4723
2	0.7682	0.4542
3	0.7309	0.5085
4	0.7661	0.4591
MediaMill*	0.7662	0.6557
PicSOM*	0.6643	0.3944
TokyoTech*	0.6699	0.6688
Trimps*	0.7357	0.4760

Table 1: The results of Mean Per Run for four submitted runs. * indicates the best results of other teams among all their submitted runs.

