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1. System Description

We decided to focus on extracting features only from CNNs.
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[Step 1] Feature extraction with CNNs |
(3) Gradient

— Substitute edge features
with CNN features

— Train with 1 million gradient
images (346 concepts)

(5) Places

— Scene recognition model
— Trained on 205 scene categories

— 2.9 million images
— Provided by MIT (Caffe model zoo) [

(6) Hybrid

— Scene and object recognition model
— Trained on 1,183 categories
(205 scene categories + 978 object categories)

— 3.6 million images
— Provided by MIT (Caffe model zoo)

(4) OpticalFlow

— Substitute motion features
with CNN features

— Train with 1 million optical
flow images (346 concepts)

(1) ImageNet

— Trained with the ImageNet dataset

(1.2 million images and 1,000 categories)
— Provided with the Caffe (CNN) library

Color Color

(2) Finetune

— Created by finetuning ImageNet model
for TRECVID SIN task

— 1 million keyframe images

— 346 concepts
(# of units in the output layer: 346)
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[Step 2] Feature pooling ﬂJ \ [Step 3] Classification with SVMs ?
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/—D [Step 4] Classifier fusion J \ — Original images used for both training and testing
— Waseda4: Fusion weight of 2 for ImageNet, Finetune, Places and Hybrid models. — Both original and flipped images used for training, but only original
Fusion weight of 1 for Hybrid and Gradient models. images used for testing

— Both original and flipped images used for training, and only flipped
Images used for testing.

— Waseda3: Fusion weight were optimized to improve the mAP of 30 concepts.
— Waseda2: Fusion weight were optimized to improve the mAP of 60 concepts.
\— Wasedal: Fusion weight were optimized to improve the average precision of each concept.
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Average precision of our best run (Wasedal) for each semantic concept. g 23.20 22 93 72 88 iIndexing was still extremely low.
_ o (*1) This result includes some errors. After rectifying the errors, the mAPs were changed to 22.04, ~ In the fUture’ we will mvestlgate the root
9ne of our runs achieved the best average precision for some c‘c‘mcepts: ) 22.20, and 21.74, respectively causes of this poor performance and
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“Telephones" “Throwing" and “Lakes”. evaluated the performance and found that the mAPs were 19.73, 19.86, and 19.59, respectively. evaluate the OpthhS for Improving It.




