

BUPT-MCPRL@TRECVID 2015: Surveillance Event Detection

Zhicheng Zhao

Qi Chen, Xiang Li, Menglai Wang, Yanyun Zhao

BUPT-MCPRL Beijing University of Posts and Telecommunications

Summary

• BUPT-MCPRL 2015 Retrospective Results

	Event	Our ADCR	Other Best Systems
CNN-based	Emprace	0.7909	0.8680
	ObjectPut	1.0120	1.0160
	Pointing	1.0040	1.0140
	PersonRuns	0.9700	0.5768
Trajectory-based	PeopleSplitUp	0.9387	0.8934
	PeopleMeet	1.0426	0.8939

Outline

- Retrospective System Overview
- Pedestrian Detection
- Detected by CNN
 - Embrace and Pointing
 - ObjectPut and PersonRuns
- Pedestrian Tracking
- Detected by Trajectory Analysis

 PeopleMeet and PeopleSplitUp
- Conclusion

Retrospective System Overview

- Pedestrian Detection by a Head-Shoulder-CNN(HsNet)
 - Suppress the effect of partial occlusion

- Why is head-shoulder?
 - Most pedestrian instances (about 73%) show incomplete body parts
 - More than 98% keep head and shoulder
 - We detect the head-shoulder part instead of fullbody for pedestrian detection

• Why is head-shoulder?

(Miss rate)

Comparison of MR by modeling different body parts

Model	Head-shoulder	Upper-body	Full-body
Cifar-10 Network	54.6 %	59.4%	57.4%

- Dataset: SED-PD: as large as Caltech dataset
 - Randomly sample from TrecVid08-Dataset
 - Positive
 - 124,000 for training
 - 63,000 for validation
 - 210,000 for testing
 - Negative
 - Anything of non-positive
 - About 7 millions
 - Available: www.bupt-mcprl.net/datadownload.php

HsNet: A CNN Cascade Architecture

• Input size: 32x32

Outline

- Retrospective System Overview
- Pedestrian Detection
- Detected by CNN

 Embrace and Pointing
 ObjectPut and PersonRuns
- Pedestrian Tracking
- Detected by Trajectory Analysis

 PeopleMeet and PeopleSplitUp
- Performance Evaluation
- Conclusion

Embrace, Pointing **ObjectPut**, PersonRuns

• Regard four actions as the classification of static key-poses

Pointing

Embrace

ObjectPut

PersonRuns

Embrace and Pointing

- Method
 - Apply the same CNN architecture of pedestrian detection
 - Training samples are the pedestrian detection results with 1.5-fold expansion

Embrace and Pointing

Embrace:

Year	ADCR	#CorDet	#FA	#Miss
2014	0.8318	26	44	112
2015	0.7909	36	90	102

Pointing:

Year	ADCR	#CorDet	#FA	#Miss
2014	1.0027	21	57	774
2015	1.0040	16	42	778

ObjectPut and PersonRuns

- Method
 - We train two CNNs to recognize them
 - The structure is similar to Cifar-10
 - The size of samples is 64x64

ObjectPut and PersonRuns

ObjectPut:

Year	ADCR	#CorDet	#FA	#Miss
2015	1.0120	2	33	287

PersonRuns:

			<u> </u>	
Year	ADCR	#CorDet	#FA	#Miss
2014	0.9070	8	139	43
2015	0.9700	4	87/	46

Outline

- Retrospective System Overview
- Pedestrian Detection
- Pedestrian Tracking
- Detected by CNN

 Embrace and Pointing
 - ObjectPut and PersonRuns
- Detected by Trajectory Analysis
 - PeopleMeet and PeopleSplitUp
- Conclusion

PeopleMeet & PeopleSplitUp: Trajectory Analysis based on Pedestrian Tracking

- Still followed this tracking method [Bo Yang. CVPR 2013]
 - Although we introduce Gaussian process regression instead of original quadratic function to improve tracking performance, the detection results are unsatisfactory.

Conclusion

- SED-PD: our dataset plays an important role.
- HsNet: a cascade-based CNN model improve the accuracy and speed of pedestrian detection which contributes to SED.
- In future work, smarter CNN-based method joint dense trajectory algorithm would be explored.

Thank you!