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Summary

e BUPT-MCPRL 2015 Retrospective Results
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Pedestrian Detection

e Pedestrian Detection by a Head-Shoulder-CNN(HsNet)
» Suppress the effect of partial occlusion
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Pedestrian Detection

 Why is head-shoulder?
* Most pedestrian instances (about 73%) show
incomplete body parts
* More than 98% keep head and shoulder
* We detect the head-shoulder part instead of full-
body for pedestrian detection
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Pedestrian Detection

 Why is head-shoulder?

(Miss rate)
COMPARISON OF MR BY MODELING DIFFERENT BODY PARTS

Model Head-shoulder  Upper-body  Full-body

Cifar-10 Network 54.6% 59.4% 57.4%




Pedestrian Detection

* Dataset: SED-PD: as large as Caltech dataset
 Randomly sample from TrecVid08-Dataset

* Positive
* 124,000 for training
e 63,000 for validation
» 210,000 for testing
* Negative
* Anything of non-positive
* About 7 millions

* Available: www.bupt-mcprl.net/datadownload.php



Pedestrian Detection

* HsNet: A CNN Cascade Architecture
* Input size: 32x32
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Pedestrian Detection

* HsNet on SED-PD

[10]J. Hosang, CVPR 2015
[6] P. Felzenszwalb, CVPR 2008
[8] P. Luo, CVPR 2014

miss rate

73.9% DPM [6]
58.5% JointDeep [8]
57 4% CifarNet [10]

05 54.6% Cifar—10 Network (head—shoulder)| "~ """~ """"

= 51.8% HsNet (ours) :
107 107 107" 10 10' B

false positives per image (FPPI)
Device Model (second/frame)
Ours  CifarNet [10] DPM [6]  JointDeep [8]
CPU 1.02 1.69 3.76 31.52
GPU 0.33 0.56 — —




Outline

* Detected by CNN

— Embrace and Pointing
— ObjectPut and PersonRuns



Embrace, Pointing
ObjectPut, PersonRuns

* Regard four actions as the classification of static key-poses
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Embrace and Pointing

* Method

* Apply the same CNN architecture of pedestrian detection

* Training samples are the pedestrian detection results with
1.5-fold expansion
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Embrace and Pointing

Embrace:

2014 0.8318
2015 0.7909 36 90 102

Pointing:

2014 1.0027
2015 1.0040 16 42 778
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ObjectPut and PersonRuns

* Method

* We train two CNNs to recognize them
* The structure is similar to Cifar-10
* The size of samples is 64x64
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ObjectPut and PersonRuns

ObjectPut:
2015 1.0120
PersonRuns:
2014 0.9070 '139 l
46

2015 0.9700 & 87/
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Outline

* Detected by Trajectory Analysis
— PeopleMeet and PeopleSplitUp



PeopleMeet & PeopleSplitUp: Trajectory
Analysis based on Pedestrian Tracking

e Still followed this tracking method [Bo Yang. CVPR 2013]

* Although we introduce Gaussian process regression instead of
original quadratic function to improve tracking performance,

the detection results are unsatisfactory.
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Conclusion

* SED-PD: our dataset plays an important role.

* HsNet: a cascade-based CNN model improve the
accuracy and speed of pedestrian detection which
contributes to SED.

* In future work, smarter CNN-based method joint
dense trajectory algorithm would be explored.
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