CCNY at TRECVID 2015: Localization

Yuancheng Ye¹, Xuejian Rong², Xiaodong Yang³, and Yingli Tian^{1,2}

¹The Graduate Center, CUNY ²The City College of New York, CUNY ³NVIDIA Research

Task Description

• Concepts

Airplane

Anchorperson

Boat_ship

Bridge

Bus

Computer

Motorcycle

Telephone

Flags

Quadruped

• Determine the presence of the concept temporally within the shot

For each frame that contains the concept, locate a bounding rectangle spatially

 Only one which is the most prominent among all submitted bounding boxes will be used in the judging.

Challenges

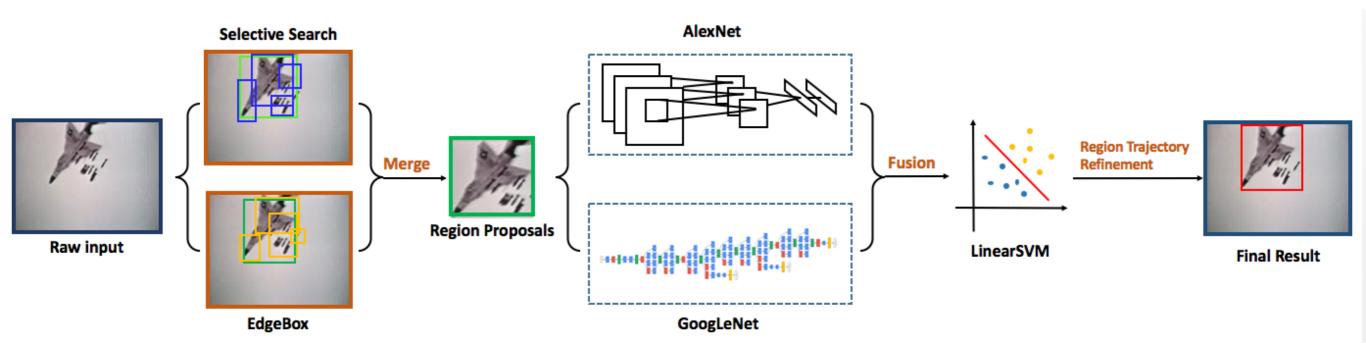
- How to locate object bounding box on each frame accurately?
- How to extend the image-based object detection algorithms into the temporal domain?

Our solution:

Regions with Convolutional Neural Network Features(R-CNN)

Region Trajectory Algorithm

System Overview



- Apply improved image-based R-CNN algorithm on each frame independently.
- Propose a novel region trajectory algorithm to extend to temporal dimension.

Improved R-CNN

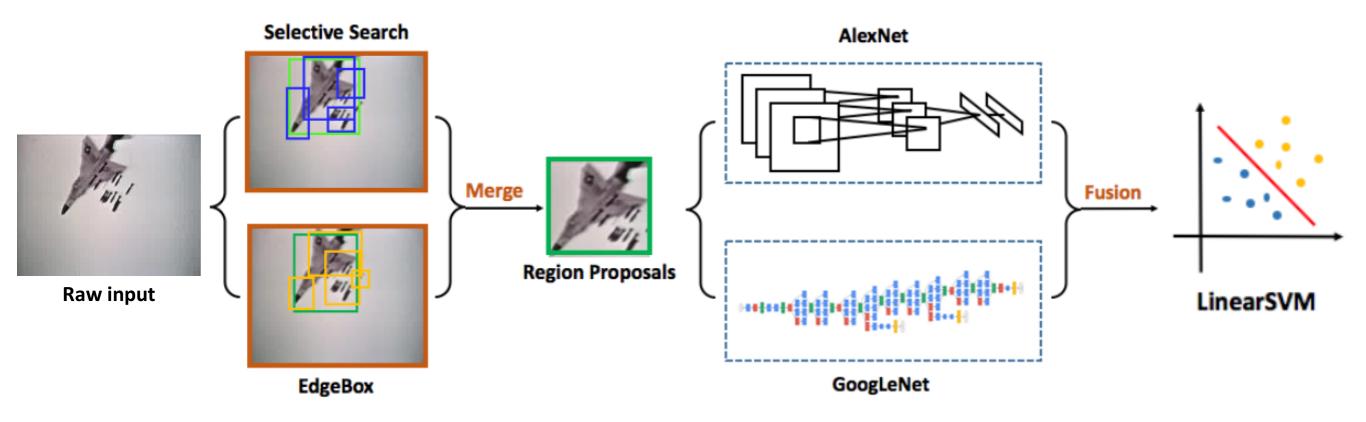


Image -> Region Proposals -> CNN Features -> Classification

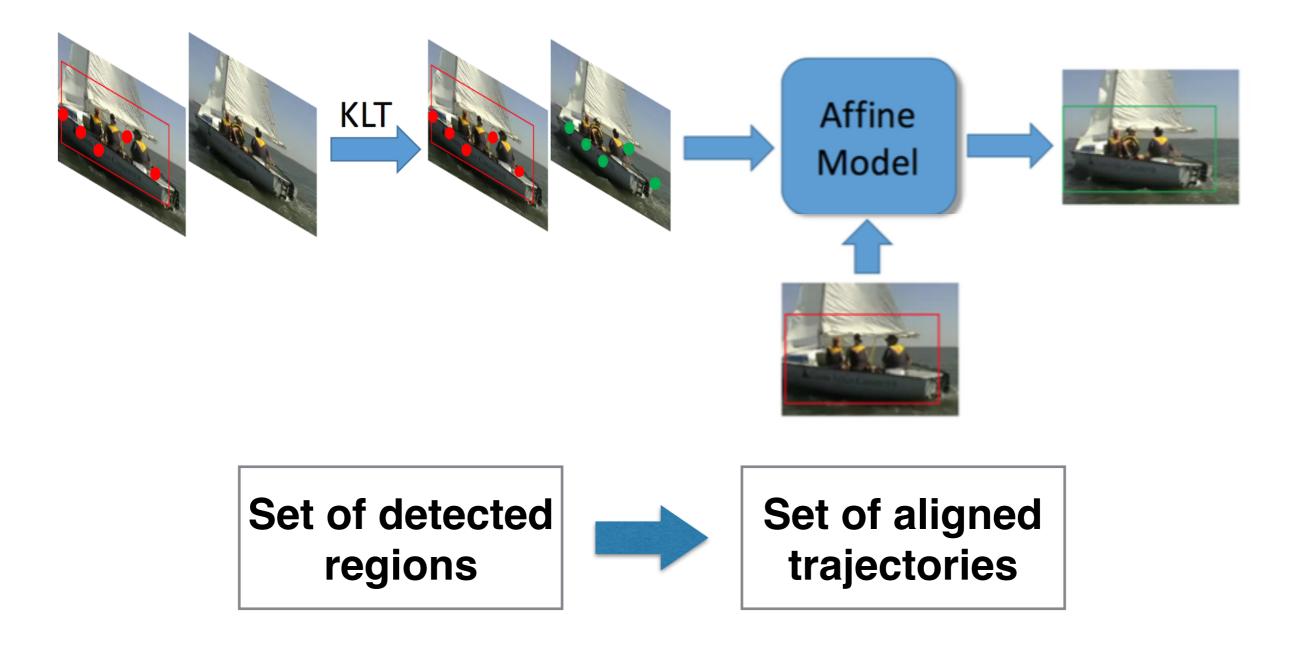
• Insufficient for object localization in videos

Input:

Output:

How to incorporate temporal info?

Region Trajectories



However.....

Input:

Output:

So many plausible trajectories are introduced!

Prune trajectories

• Threshold

 $ratio = \frac{number \ of \ regions \ detected \ by \ R-CNN}{total \ number \ of \ regions \ in \ the \ trajectory}$

Output after pruning:

Data

- Training data:
 - Internet Archive videos with Creative Commons licenses (IACC).
 - IACC.2.A, IACC.2.B
 - Totally 100 GB, 400h.
 - Size mostly 320 x 240.
 - Ranging from 10s to 6.4m.
 - Manual (temporal and spatial) annotations provided (.xml format).

- Auxiliary Data
 - AlexNet model is pre-trained on the PASCAL VOC 2007 dataset.
 - GoogLeNet model is pre-trained on the ILSVRC12 dataset.
- Testing data:
 - IACC.2.C:
 - A collection of 200h drawn randomly from the IACC.2 collection.
 - Size mostly 320 x 240.
 - 18 GB of Master I-Frames will be extracted for evaluation.

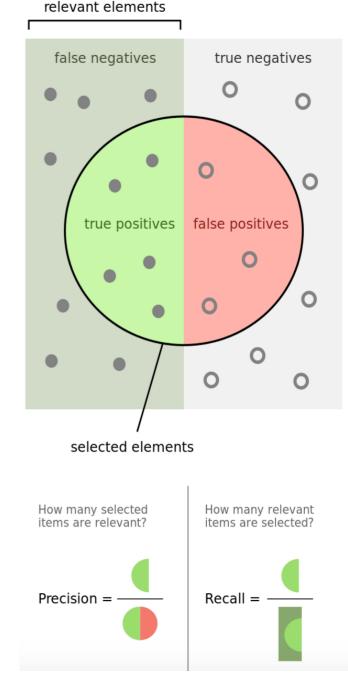
- Data Format:
 - I-frames: a sequence of key frames defines which movement the viewer will see, whereas the position of the key frames on the film, video, or animation defines the timing of the movement.
- Data Statistics

	airplane	anchor person	boat_ship	bridges	bus	computers	motorcycle	telephones	flags	quadruped
Positive I-frames	710	3482	7055	1380	860	4111	1835	3272	8429	6315
Negative I-frames	548	0	4156	1537	2288	0	2036	2064	3156	8595
Test I-frames	7047	14119	5874	6054	4774	15814	4165	5851	19092	13949

Evaluation Metrics

- Precision, Recall and F-Score are calculated based on temporal and spatial results respectively.
- Averages are computed for values of each concept.
- The computing units are frames (temporally) and pixels (spatially).

 $F\text{-}Score = \frac{2 \times Precision \times Recall}{Precision + Recall}$



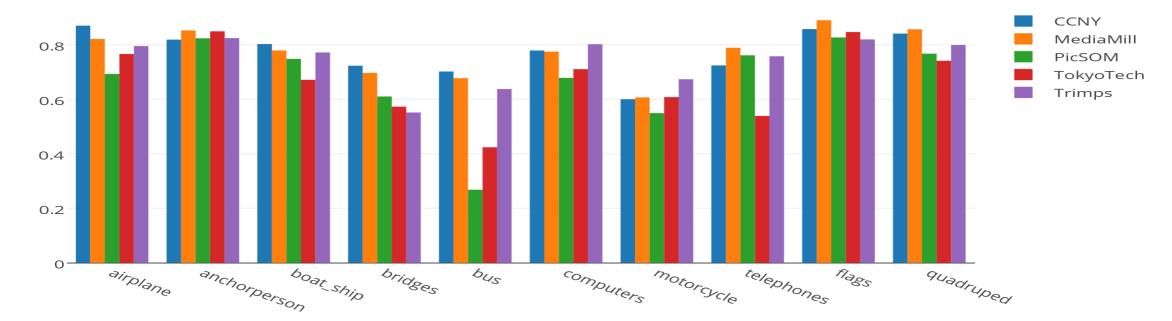
(from Wikipedia)

Results

• Mean_Per_Run

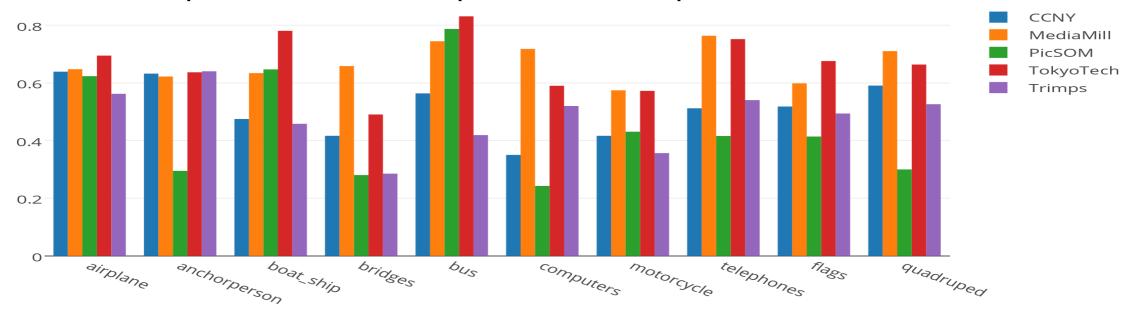
Run	iframe_fscore	mean_pixel_fscore
1	0.7447	0.4723
2	0.7682	0.4542
3	0.7309	0.5085
4	0.7661	0.4591
MediaMill*	0.7662	0.6557
PicSOM*	0.6643	0.3944
TokyoTech*	0.6699	0.6688
Trimps*	0.7357	0.4760

Table 1: The results of Mean_Per_Run for four submitted runs. * indicates the best results of other teams among all their submitted runs.



• iframe_fscore per concept

mean_pixel_fscore per concept

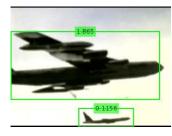


Results Visualization

Boat_ship

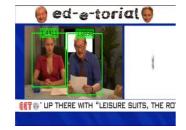
Telephone

• Success Examples



Airplane

Computer



Motorcycle

• Failure Examples

Airplane

Computer

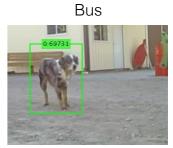
Anchorperson

Motorcycle

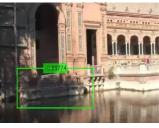
Boat_ship

Telephone

Flags



Quadruped



Bridge

Bus

Quadruped

17

Conclusion

- By combining R-CNN and region trajectory algorithm, we propose a robust and effective system for video-based object detection task.
- Temporal information can make a contribution to the object detection task in videos.
- Among all participant teams, we rank 1st for the measurement of iframe_fscore, and 3rd for the measurement of mean_pixel_fscore.

Future Work

- Incorporate more accurate image-based object detection algorithms, e.g., Fast-RCNN.
- Improve the region trajectory algorithm for higher spatial accuracy.
- Adopt model ensembles to extract more discriminative features from region proposals.

Chank you