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General Instance Search Framework (1)

(1) Three things everyone should know to improve object retrieval, R. 
Arandjelović, A. Zisserman, CVPR 2012

(2) Query-adaptive asymmetrical dissimilarities for visual object retrieval, Cai-
Zhi Zhu, Hervé Jégou, Shin'Ichi Satoh, ICCV 2013.

(2)
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year system

Last Year (2014) Method BOW are used 
to quickly filter 
out unrelated 
frames/shots



BOW is Good for Rich Featured Objects



● Small objects

Query

But … Not for Less Textured Objects



● Burstiness

Background Dominated Query Object

Query



● Benefit:
○ Model query object as a shape structure.
○ Work well with small and texture-less object.
○ Augment bounding box information.

Visualization of DPM model for query 9109

Query 9109

DPM-based Object Localizer



Wrong shared 
words case

No shared 
word case

DPM Is Good for Less Textured Objects



● DPM is based on gray scale feature

DPM: The Good and The Bad



Re-Scoring Method 
→ Our Main Contribution in 2014



● How to weight score of BOW and DPM?
● How to handle more highly deformable and 

rich colored texture objects?

⇒ This year, we tried two methods.

However



● Instead of using average approach (w1=w2), 
we proposed an adaptive way of fusion.

● A neural network is used to automatically 
estimate weights of combining the two scores 
of BOW and DPM.

Query Adaptive Fusion



● Input of the network are features derived 
from:
○ average ratio of object area to image area
○ average number of keypoints inside query mask
○ number of shared visual words between two query 

examples
● Output of the network is weight of BOW and 

DPM derived from last years dataset
● Adaptive fusion score (NII_HITACHI_UIT_1):

Query Adaptive Fusion



● DPM are good, but it:
○ does not take into account color information
○ has not enough training data and hard negatives
○ still bad at too much deformable object (with 

occlusion)
● RCNN based object detector are current 

SOA
○ uses color information to compute similarity score
○ trained on a lot of data
○ retrained on specific query object
○ still not good at finding bounding box

⇒ We combine these methods together

Combination with 
RCNN Based Object Detector



● The final score of our proposed method is 
given as following (NII_HITACHI_UIT_3):

where,
○ Bounding box is kept as last year (returned from 

DPM), 3 types of shared points are computed the 
same

○ Normalized score of Fast RCNN are used to 
compute base score

Final Score Based on 
Fast RCNN and DPM



Experiments



● We got max perf on 8/30 queries from our 4 
submitted runs. 

● Object query (9145 → this jukebox wall unit)

● Object query (9146 → this change machine) 

Results - Good



● Consistently good for logo query (2014 & 2015)
● (9137 → a Ford script logo)

Results - Good



● Small objects (9129 → this silver necklace)

Results - Bad



● Texture, illumination (9139 → this shaggy dog (Genghis))

Results - Bad



● Color information is important (9136 → this 
yellow VW beetle with roofrack)

Results - Bad



● Context (9155 → this dart board)

Results - Bad



● The first time we use a RCNN in our system 
and it improves pretty much compared to two 
baselines (41.76% → 42.42%)
○ take into account pretrained network.
○ take advantage of color information.

● We tried to improve the adaptive weighting and 
it works on previous datasets, but unsuccessful 
in this year (40.11% vs 41.76%)

● There still have unsolved problems:
○ Too small objects (with no texture).
○ Too flexible query instances: persons, animals.

Conclusions



Best Run NII_Hitachi_UIT_3 (42.42%)

necklace shaggy dog dart board

textual feature (e.g 
keywords) is the key


