TRECVID-2015 Semantic Indexing task: Overview

Georges Quénot

 Laboratoire d'Informatique de GrenobleGeorge Awad
Dakota Consulting - NIST

Outline

-Task summary (Goals, Data, Run types, Concepts, Metrics)
-Evaluation details
-Inferred average precision
-Participants
-Evaluation results

- Hits per concept
-Results per run
-Results per concept
-Significance tests
-Progress task results
-Global Observations

Semantic Indexing task

-Goal: Automatic assignment of semantic tags to video segments (shots)
-Secondary goals:
-Encourage generic (scalable) methods for detector development.
-Semantic annotation is important for filtering, categorization, searching and browsing.
-Task: Find shots that contain a certain concept, rank them according to confidence measure, submit the top 2000.
-Participants submitted one type of runs:
-Main run Includes results for 60 concepts, from which NIST evaluated 30 .

Semantic Indexing task (data)

-SIN testing dataset

- Main test set (IACC.2.C): 200 hours, with durations between 10 seconds and 6 minutes.
-SIN development dataset
- (IACC.1.A, IACC.1.B, IACC.1.C \& IACC.1.tv10.training): 800 hours, used from 2010 - 2012 with durations between 10 seconds to just longer than 3.5 minutes.
-Total shots:
-Development: 549,434
-Test: IACC.2.C (113,046 shots)
- Common annotation for 346 concepts coordinated by LIG/LIF/Quaero from 2007-2013 made available.

Semantic Indexing task (Concepts)

- Selection of the 60 target concepts Were drawn from 500 concepts chosen from the TRECVID "high level features" from 2005 to 2010 to favor cross-collection experiments Plus a selection of LSCOM concepts.
- Generic-Specific relations among concepts for promoting research on methods for indexing many concepts and using ontology relations between them.
- we cover a number of potential subtasks, e.g. "persons" or "actions" (not really formalized).
- These concepts are expected to be useful for the content-based (instance) search task.
-Set of relations provided:
-427 "implies" relations, e.g. "Actor implies Person"
-559 "excludes" relations, e.g. "Daytime_Outdoor excludes Nighttime"

Semantic Indexing task (training types)

-Six training types were allowed:
-A - used only IACC training data (30 runs)
$\cdot \mathrm{B}$ - used only non-IACC training data (0 runs)
-C - used both IACC and non-IACC TRECVID (S\&V and/or Broadcast news) training data (2 runs)
-D - used both IACC and non-IACC non-TRECVID training data(54 runs)
-E - used only training data collected automatically using only the concepts' name and definition (0 runs)
-F - used only training data collected automatically using a query built manually from the concepts' name and definition (0 runs)

30 Single concepts evaluated(1)

3 Airplane*
5 Anchorperson
9 Basketball*
13 Bicycling*
15 Boat_Ship*
17 Bridges*
19 Bus*
22 Car_Racing
27 Cheering*
31 Computers*
38 Dancing
41 Demonstration_Or_Protest
49 Explosion_fire
56 Government leaders
71 Instrumental_Musician*

72 Kitchen
80 Motorcycle*
85 Office
86 Old_people
95 Presss_conference
100 Running*
117 Telephones*
120 Throwing
261 Flags*
297 Hill
321 Lakes
392 Quadruped*
440 Soldiers
454 Studio_With_Anchorperson
478 Traffic

Evaluation

-The 30 evaluated single concepts were chosen after examining TRECVid 201360 evaluated concept scores across all runs and choosing the top 45 concepts with maximum score variation.
-Each feature assumed to be binary: absent or present for each master reference shot
-NIST sampled ranked pools and judged top results from all submissions
-Metrics: inferred average precision per concept
-Compared runs in terms of mean inferred average precision across the 30 concept results for main runs.

2015: mean extended Inferred average precision (xinfAP)

- 2 pools were created for each concept and sampled as:
-Top pool (ranks 1-200) sampled at 100\%
-Bottom pool (ranks 201-2000) sampled at 11.1\%

30 concepts
195,500 total judgments
11,636 total hits
7489 Hits at ranks $(1-100)$
2970 Hits at ranks $(101-200)$
1177 Hits at ranks (201-2000)

-Judgment process: one assessor per concept, watched complete shot while listening to the audio. -infAP was calculated using the judged and unjudged pool by sample_eval

2015: 15 Finishers

```
PicSOM Aalto U., U. of Helsinki
CMU
Insightdcu
EURECOM
FIU_UM
IRIM
LIG Laboratoire d'Informatique de Grenoble
NII_Hitachi_UIT Natl.Inst. Of Info.; Hitachi Ltd; U. of Inf. Tech. (HCM-UIT)
TokyoTech Tokyo Institute of Technology
MediaMill
siegen_kobe_nict
UCF_CRCV
UEC
Waseda
    Information Technologies Institute, Centre for Research and
    Technology Hellas
    Carnegie Mellon U.; CMU-Affiliates
    Dublin City Un.; U. Polytechnica Barcelona
    EURECOM
    Florida International U., U. of Miami
    CEA-LIST, ETIS, EURECOM, INRIA-TEXMEX, LABRI, LIF, LIG, LIMSI-
    TLP, LIP6, LIRIS, LISTIC
```

```
ITI_CERTH
```

```
ITI_CERTH
```

Aalto U., U. OE Helsinki
Information Technologies Institute, Centre for Research and Technology Hellas
Carnegie Mellon U.; CMU-Affiliates
Dublin City Un.; U. Polytechnica Barcelona EURECOM
Florida International U., U. of Miami
CEA-LIST, ETIS, EURECOM, INRIA-TEXMEX, LABRI, LIF, LIG, LIMSITLP, LIP6, LIRIS, LISTIC
Laboratoire d'Informatique de Grenoble
Natl.Inst. Of Info.; Hitachi Ltd; U. of Inf. Tech. (HCM-UIT)
Tokyo Institute of Technology
U. of Amsterdam Qualcomm
U. of Siegen; Kobe U.; Natl. Inst. of Info. and Comm. Tech.
U. of Central Florida
U. of Electro-Communications

Waseda U.

Inferred frequency of hits varies by concept

Total true shots contributed uniquely by team

Team	No. of Shots	Team	No. of shots
Insightdcu	27	Mediamill	8
NII	19	NHKSTRL	7
UEC	17	ITI_CERTH	6
siegen_kobe_nict	13	HFUT	4
EURECOM	10	CMU	3
FIU	10	LIG	2
UCF	10	IRIM	1

Fewer unique shots compared to TV2014, TV2013 \& TV2012

Main runs scores - 2015 submissions

Main runs scores - Including progress

[^0]
Top $10 \operatorname{InfAP}$ scores by concept

Statistical significant differences among top 10 Main runs (using randomization test, $\mathrm{p}<0.05$)

•Run name	(mean infAP)	$>$ D_Waseda.15_1
D_MediaMill.15_4	0.362	>D_Waseda.15_3
D_MediaMill.15_2	0.359	>D_Waseda.15_4
D_MediaMill.15_1	0.359	>D_Waseda.15_2
D_MediaMill.15_3	0.349	
D_Waseda.15_1	0.309	
D_Waseda.15_4	0.307	
D_Waseda.15_3	0.307	
D_Waseda.15_2	0.307	
D_TokyoTech.15_1	0.299	
D_TokyoTech.15_2	0.298	

```
>D_MediaMill.15_1
    >D_MediaMill.15_3
    >D_Waseda.15_1
            >D_Waseda.15_3
                            >D_Waseda.15_4
    DD_Waseda.15_2
    >D_TokyoTech.15_1
    >D_TokyoTech.15_2
>D_MediaMill.15_2
    >D_MediaMill.15_3
    >D_Waseda.15_1
                            >D_Waseda.15_3
                            >D_Waseda.15_4
    >D_Waseda.15_2
    DD_TokyoTech.15_1
    >D_TokyoTech.15_2
```


Progress subtask

-Measuring progress of 2013, 2014, \& 2015 systems on IACC.2.C dataset.

- 2015 systems used same training data and annotations as in 2013 \& 2014.
-Total 6 teams submitted progress runs against IACC.2.C dataset.

Progress subtask: Comparing best runs in 2013, 2014 \& 2015 by team

Randomization tests show that 2015 systems are better than 2013 \& 2014 systems (except for UEC, 2014 is better)

Progress subtask: Concepts improved vs weaken by team

2015 Observations

- 2015 main task was harder than 2014 main task that was itself harder than 2013 main task (different data and different set of target concepts)
- Raw system scores have higher Max and Median compared to TV2014 and TV2103, still relatively low but regularly improving
- Most common concepts with TV2015 have higher median scores.
- Most Progress systems improved significantly from 2014 to 2015 as this was also the case from 2013 to 2014.
- Stable participation (15 teams) between 2014 and 2015 (but was 26 teams for TV2013).

2015 Observations - methods

- Further moves toward deep learning
- More "deep-only" submissions
- Retraining of networks trained on ImageNet
- Use of many deep networks in parallel
- Data augmentation for training
- Use of multiple frames per shot for predicting
- Feeding of DCNNs with gradient and motion features
- Use of "deep features" (either final or hidden) with "classical" learning
- Hybrid DCNN-based/classical systems
- Engineered features still used as a complement (mostly Fisher Vectors, SuperVectors, improved BoW, and similar) but no new development
- Use of re-ranking or equivalent methods

SIN 2016 ?

- No SIN task is planned for 2016
- Resuming the ad hoc video retrieval task is considered instead

[^0]: * Submitted runs in 2013 against 2015 testing data (Progress runs)
 * Submitted runs in 2014 against 2015 testing data (Progress runs)

