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Abstract

In this paper we summarize our TRECVID 2016 [1] video
recognition experiments. We participated in three tasks:
video search, event detection and video description. Here
we describe the tasks on event detection and video descrip-
tion. For event detection we explore semantic representa-
tions based on VideoStory and an ImageNet Shuffle for both
zero-shot and few-example regimes. For the showcase task
on video description we experiment with a deep network that
predicts a visual representation from a natural language de-
scription, and use this space for the sentence matching. For
generative description we enhance a neural image caption-
ing model with Early Embedding and Late Reranking. The
2016 edition of the TRECVID benchmark has been a fruitful
participation for our joint-team, resulting in the best overall
result for zero- and few-example event detection as well as
video description by matching and in generative mode.

1 Task I: Event Recognition

The MediaMill approach to multimedia event detection is
optimized for recognition scenarios when video examples are
scarce or even completely absent. The key in such a chal-
lenging setting is a semantic video representation [13]. Our
experiments focus on exploring such semantic representa-
tions for video search.

1.1 Representation I: VideoStory

The first representation is based on VideoStory, as detailed
in [6, 7]. To summarize, it learns the video representation
from freely available web videos and their descriptions using
an embedding between video features and term vectors. In
the embedding the correlations between the words are uti-
lized to learn a more effective representation by optimizing
a joint objective balancing descriptiveness and predictabil-
ity. We start from a dataset of videos, represented by video
features X, and their textual descriptions, represented by
binary term vectors Y , indicating which words are present
in each video description. Then, our VideoStory represen-

tation is learned by minimizing:

LV(A,W ) = min
S
Ld(A,S) + Lp(S,W ), (1)

where A is the textual projection matrix, W is the visual
projection matrix, and S is the VideoStory embedding. The
loss function Ld corresponds to our first objective for learn-
ing a descriptive VideoStory, and the loss function Lp cor-
responds to our second objective for learning a predictable
VideoStory. The embedding S interconnects the two loss
functions.

Descriptiveness. For the Ld function, we use a variant of
regularized Latent Semantic Indexing. This objective min-
imizes the quadratic error between the original video de-
scriptions Y , and the reconstructed translations obtained
from A and S:

Ld(A,S) =
1

2

N∑
i=1

‖yi −Asi‖22 + λaΩ(A) + λsΨ(S), (2)

where Ψ(·) and Ω(·) denote regularization functions, and
λa ≥ 0 and λs ≥ 0 are regularizer coefficients. We use
the squared Frobenius norm for regularization, which is the
matrix variant of the `2 regularizer, i.e. Ω(A) = 1

2‖A‖
2
F =

1
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∑
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ij , the sum of the squared matrix ele-

ments. Similarly for the VideoStory matrix Ψ(S) = 1
2‖S‖

2
F.

Predictability. The Lp function measures the occurred
loss between the VideoStory S and the embedding of video
features using W . We define Lp as a regularized regression,
similar to ridge regression:

Lp(S,W ) =
1

2

N∑
i=1

‖si −W>xi‖22 + λwΘ(W ), (3)

where we use (again) the Frobenius norm for regularization
of the visual projection matrix W , Θ(W ) = 1

2‖W ‖
2
F, and

λw is the regularization coefficient.
The VideoStory objective function, as given in Eq. (1),

is convex with respect to matrix A and W when the em-
bedding S is fixed. In that case, the joint optimization is
decoupled into Eq. (2) and Eq. (3), which are both reduced
to a standard ridge regression for a fixed S. Moreover, when



both A and W are fixed, the objective in Eq. (1) is con-
vex w.r.t. S. Therefore we use standard stochastic gradient
descent by computing the gradients of a sample w.r.t. the
current value of the parameters, and we minimize S jointly
with A and W .

To predict our VideoStory representation from a low-level
video feature xi we use

si = W>xi, (4)

Then, using the predicted representation si, the term vec-
tors for each unseen video are predicted as:

ŷi = Asi = AW>xi, (5)

where the words with the highest values are most relevant
for this video.

To enable zero-example recognition, we employ the fol-
lowing steps: First, each test video is represented by pre-
dicting its term vector ŷi using Eq. (5), based on the pre-
trained embeddings. Second, we translate the textual event
definition into the event query, denoted as ye ∈ RM , by
matching the word2vec [15] mapping of the words in the
event definition with the M unique words in the VideoStory
dictionary. Finally, the zero-example ranking is obtained by
measuring the similarity between the video representations
and the event query based on the cosine similarity:

se(xi) =
ye>ŷi

||ye|| ||ŷi||
. (6)

1.2 Representation II: ImageNet Shuffle

The second representation builds on concepts obtained after
an ImageNet Shuffle [14]. We start from a Google inception
network [17] trained on 22K ImageNet concepts. To deal
with the problems of over-specific classes and classes with
few images, we introduce a bottom-up and top-down ap-
proach for reorganization of the ImageNet hierarchy based
on all its 21,814 classes and more than 14 million images.
The classes in the ImageNet dataset are a subset of the
WordNet collection and the classes are therefore connected
in a hierarchy. The connectivity between classes provides
information about their semantic relationship. We uti-
lize the hierarchical relationship of WordNet for combin-
ing classes to generate reorganized ImageNet hierarchies for
pre-training, as detailed in [14]. After this ImageNet Shuffle
we maintain about 13k concepts. For event detection, we
average the representations of the frames over each video,
followed by `1-normalization.

1.3 Submissions

0Ex baseline This 0ex baseline run uses the output of the
probability layer of a Google inception net applied to two
frames per second. A uniform filter is applied to the frame
level output. The filter output is ranked per video based on
cosine similarity to a vector model which consists of the top

three concepts closest to the query terms in word2vec space.
The cosine similarities are put through a percentile filter to
determine the video score. Two CNN’s are used. The first is
trained on FCVID. The second is trained on a combination
of the Fudan Columbia Video dataset (FCVID) [10], UCF-
101 [16], and TRECVID. The final output is a late fusion
of these two.
0Ex topic In this 0ex run the text queries are repre-

sented using a topic model. Then, we learn to embed the
CNN features of the videos into the topic model space. The
final score is the cosine similarity between the embedded
video and the represented text query. This is an early ver-
sion of the approach presented in [8].
0Ex combi This run combines the 0ex baseline with

VideoStory. Where VideoStory uses as input feature the
averaged output of the pool5 layer of a Google inception
net applied to two frames per second. VideoStory trans-
lates this visual representation into words from its vocab-
ulary. Videos are ranked based on cosine similarity to the
word2vec mapping of the event text onto the VideoStory
vocabulary. Three versions of VideoStory are used. The
first is trained on the original YouTube46k dataset [6]. The
second on FCVID. The third is trained on the combination
of both datasets. The final VideoStory output is a late fu-
sion of these three. The final output of the run is the fusion
of the baseline plus the VideoStory fusion.
10Ex baseline This 10ex run uses three modalities:

• Low-level visual features: The system computes the
pool5 layer of a Google inception net on two frames
per second. The features are averaged per video to ob-
tain a video-level representation. A HIK SVM model
is trained based on these features and used to classify
videos.

• High-level visual features: The system applies a Google
inception net trained on 12988 classes after an Ima-
geNet Shuffle on two frames per second. The proba-
bilities are averaged per video to obtain a video-level
representation. A HIK SVM model is trained based on
this representation and used to classify videos.

• VideoStory : The VideoStory transformation is applied
to the low level visual features above. A HIK SVM
model is trained based on the VideoStory embedding
and used to classify videos.

The final output of the system is based on fusion of all three
modalities.
10Ex combi This 10ex run uses five modalities, the same

ones as the 10ex baseline, plus two additional ones:

• Low level audio features: The system computes a Fisher
vector of MFCC coefficients and their first and second
order derivatives. A HIK SVM model is trained based
on these features and used to classify videos.

• Low level motion features: The system computes MBH
and HOG descriptors along the motion trajectories.



Table 1: MediaMill multimedia event detection InfAP200% re-
sults on MED16EvalFull for 0ex and 10ex. Results in bold indicate
the best runs among all submissions in TRECVID 2016 for this task
with fully automatic condition.

0ex 10ex

Run pre-specified ad hoc

0Ex baseline 13.5 – –

0Ex topic 11.1 – –

0Ex combi 14.9 – –

10Ex baseline – 36.8 44.5

10Ex combi – 39.4 46.3

These local descriptors are then aggregated in each
video using a Fisher vector to represent it. After nor-
malization, a linear SVM is trained for each event and
applied on the videos to obtain confidence scores.

The final output of the system is based on fusion of all five
modalities.

1.4 Results

We summarize our results in Table 1.

2 Task II: Video Description

We also participated in the TRECVID 2016 showcase task
of Video to Text Description, which consists of two subtasks,
i.e., Matching and Ranking, and Description Generation.

2.1 Matching and Ranking

In this subtask, participants were asked to rank a list of
pre-defined sentences in terms of relevance for a given video.
The test set consists of 1,915 videos collected from Twitter
Vine. Each video is about 6 sec long. The videos were
given to 8 annotators to generate a total of 3,830 sentences,
with each video associated with two sentences written by
two different annotators. The sentences have been split into
two equal-sized subsets, set A and set B, with the rule that
sentences describing the same video are not in the same
subset. Per test video, participants are asked to rank all
sentences in the two subsets.
Approach. We rely on Word2VisualVec as detailed

in [4]. Briefly, our goal is to learn a visual representation
from a natural language description. By doing so, the rel-
evance between a given video x and a specific sentence q
can be directly computed in a visual feature space. More
formally, let φ(x) ∈ Rd be a d-dimensional visual feature
vector. We instantiate φ(x) with a ConvNet feature vector.
We aim for a sentence representation r(q) ∈ Rd such that
the similarity can be expressed in terms of φ(x) and r(q),
say, in the form of an inner product. Word2VisualVec is

designed to produce r(q). To handle sentences of varied
length, we choose to first vectorize each sentence with a
500-dimensional word2vec model [15]. Following [2, 9, 11],
we train word2vec on a corpus of Flickr tags rather than
the web documents. Let w2v(w) be individual word embed-
ding vectors, we obtain the embedding vector of the input
text by mean pooling over its words. The output of the first
layer then goes through a multi-layer perceptron to produce
r(q), which resides in the visual feature space [4].

At training time, given an video x and a sentence q de-
scribing the video, we propose to reconstruct its visual fea-
ture φ(x) directly from q, with Mean Squared Error as our
objective function and we solve it by stochastic gradient
descent with RMSprop [18]. NIST provides a training set
of 200 videos, which we consider insufficient for training
Word2VideoVec. Instead, we learn the network parame-
ters using video-text pairs from MSR-VTT [20], with hyper-
parameters tuned on the provided TRECVID training set.
Submissions. We used the pre-trained GoogLeNet-

shuffle model [14] to extract 1,024-dim visual features per in-
dividual frame. We obtain the video-level feature by mean-
ing pooling, as suited for short videos. The audio channel of
a video can sometimes provide complementary information
to the visual channel. For instance, to help decide whether a
person is talking or singing. To exploit this channel, we ex-
tract a 1,024-dim bag of quantized Mel-frequency Cepstral
Coefficients vector [5] and concatenate it with the previ-
ous visual feature. Word2VisualVec is trained to predict
such a visual-audio feature, as a whole, from input text.
Word2VisualVec is used in a principled manner, transform-
ing an input sentence to a video feature vector, let it be
visual or visual-audio. For the sake of clarity we term the
video variant Word2VideoVec.
Results. The performance metric is Mean Inverted Rank

at which the annotated item is found. Higher mean in-
verted rank means better performance. As shown in Fig.
1, with Mean Inverted Rank ranging from 0.097 to 0.110,
Word2VideoVec leads the evaluation on both set A and set
B in the context of all submissions from seven teams world-
wide. Moreover, the results can be further improved by
predicting the visual-audio feature. We refer the interested
reader to [4], where we present more experiments that de-
tail the model’s properties and capabilities for video (and
image) to sentence matching.

2.2 Description Generation

In this subtask, participants were asked to generate a sen-
tence to describe a specific test video, independently and
without taking into consideration the existence of the sen-
tence sets A and B.
Approach. We employ the Early Embedding + Late

Reranking approach [3] for video description generation.
This approach is built on top of a neural image caption-
ing model [19], enhancing it with two novel modules. One
is early embedding, which enriches the current low-level in-
put to LSTM by tag embeddings. The other is late rerank-
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Figure 1: State-of-the-art video-to-sentence matching results in the TRECVID 2016 benchmark, showing the good performance of
Word2VideoVec compared to 19 alternative approaches, which can be further improved by predicting the visual-audio feature.

ing, for re-scoring generated sentences in terms of their rel-
evance to a specific video. We try two distinct strategies
to implement the tag embedding module. One is to em-
ploy a number of existing video taggers to automatically
predict at most three tags for each video. See [3] for details.
Word2VisualVec from the first task is re-employed to en-
code the predicted tags into a video feature vector. In the
second strategy, based on the observation that pairs of tags
are deemed to be more descriptive than individual tags [12],
we extract common bi-grams from the MSR-VTT sentences
[20], covering varied combinations of nouns, verbs and ad-
jectives such as man talk, young girl, girl singing, and play-
ing guitar. This results in a vocabulary of 288 bi-grams. An
MLP classifier that predicts the bi-grams is trained on the
MSR-VTT dataset. For each video the MLP output is used
as another semantic-enriched representation, which we term
Video Bi-gram Vector. The Word2VisualVec vector and the
video bi-gram vector are used separately to initialize LSTM.

In addition, as some events usually happen in relatively
fixed scenes, we heuristically append where at the end of
the generated sentence if the events are detected. In partic-
ular, if the predicted sentence contains a specific sport word
(basketball / baseball / football, etc), the phrase on a sport
field is added. If the sentence contains sing or dance, the
phrase on a stage is added. These naive rules result in a
small performance gain.

Submissions. We use the same video feature, i.e.,
GoogleNet-shuffle, as used in the matching and ranking sub-
task. The network structure of the MLP is 1024×1024×288.

Results. The performance metric is METEOR, higher
is better. As shown in Fig. 2, our runs perform the
best compared to submissions from the other participants
in this subtask. Specifically, early embedding with Video
Bi-gram Vector (METEOR of 0.2488), is marginally better
than early embedding with Word2VisualVec(METEOR of
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Figure 2: State-of-the-art video description generation result in
the TRECVID 2016 benchmark, showing the good performance of
our Early Embedding + Late Reranking solution compared to 12
approaches.

0.2475). The result is encouraging as tag embedding can be
simplified without hurting performance.
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