# TRECVID 2016 AD-HOC VIDEO SEARCH TASK : OVERVIEW 

## Georges Quénot

Laboratoire d'Informatique de Grenoble
George Awad
Dakota Consulting - NIST

## Ad-hoc Video Search Task Definition

- Goal: promote progress in content-based retrieval based on end user ad-hoc queries that include persons, objects, locations, activities and their combinations.
- Task: Given a test collection, a query, and a master shot boundary reference, return a ranked list of at most 1,000 shots (out of 335,944 ) which best satisfy the need.
- New testing data: 4,593 Internet Archive videos (IACC.3), 600 total hours with video durations between $6.5 \mathrm{~min}-9.5 \mathrm{~min}$.
- Development data: ~1400 hours of previous IACC data used between 2010-2015 with concept annotations.


## Query Development

- Test videos were viewed by 10 human assessors hired by NIST
- 4 facet description of different scenes were used (if applicable):
- Who : concrete objects and being (kind of persons, animals, things)
- What : are the objects and/or beings doing? (generic actions, conditions/state)
- Where : locale, site, place, geographic, architectural
- When : time of day, season
- In total assessors watched $\sim 35 \%$ of the IACC. 3 videos
- 90 Candidate queries chosen from human written descriptions to be used between 2016-2018.


## TV2016 Query samples by complexity

- Person + Action + Object + Location

Find shots of a person playing guitar outdoors
Find shots of a man indoors looking at camera where a bookcase is behind him
Find shots of a person playing drums indoors
Find shots of a diver wearing diving suit and swimming under water

- Person + Action + Location

Find shots of the 43rd president George W. Bush sitting down talking with people indoors
Find shots of a choir or orchestra and conductor performing on stage
Find shots of one or more people walking or bicycling on a bridge during daytime

## TV2016 Queries by complexity

## - Person + Action/state + Object

Find shots of a person sitting down with a laptop visible
Find shots of a man with beard talking or singing into a microphone
Find shots of one or more people opening a door and exiting through it
Find shots of a person holding a knife
Find shots of a woman wearing glasses
Find shots of a person drinking from a cup, mug, bottle, or other container
Find shots of a person wearing a helmet
Find shots of a person lighting a candle

## - Person + Action

Find shots of people shopping
Find shots of soldiers performing training or other military maneuvers
Find shots of a person jumping
Find shots of a man shake hands with a woman

## TV2016 Queries by complexity

## - Person + Location

Find shots of one or more people at train station platform
Find shots of two or more men at a beach scene

- Person + Object

Find shots of a policeman where a police car is visible

- Object + Location

Find shots of any type of fountains outdoors

- Object

Find shots of a sewing machine
Find shots of destroyed buildings
Find shots of palm trees

## Training and run types

Four training data types:
$\checkmark$ A - used only IACC training data (4 runs)
$\checkmark$ D - used any other training data (42 runs)
$\checkmark E$ - used only training data collected automatically using only the query text (6 runs)
$\checkmark$ F - used only training data collected automatically using a query built manually from the given query text (0 runs)

Two run submission types:
$\checkmark$ Manually-assisted (M) - Query built manually
$\checkmark$ Fully automatic (F) - System uses official query directly

## Evaluation

Each query assumed to be binary: absent or present for each master reference shot.

NIST sampled ranked pools and judged top results from all submissions.

Metrics: inferred average precision per query.
Compared runs in terms of mean inferred average precision across the 30 queries.

## mean extended Inferred average precision (xinfAP)

2 pools were created for each query and sampled as:
$\checkmark$ Top pool (ranks 1-200) sampled at 100\%
$\checkmark$ Bottom pool (ranks 201-1000) sampled at 11.1\%
$\checkmark$ \% of sampled and judged clips from rank 201-1000 across all runs $(\min =10.5 \%, \max =76 \%$, mean $=35 \%)$

| 30 queries |
| :---: |
| 187,918 total judgments |
| 7,448 total hits |
| 4642 hits at ranks (1-100) |
| 2080 hits at ranks $(101-200)$ |
| 726 hits at ranks $(201-2000)$ |

Judgment process: one assessor per query, watched complete shot while listening to the audio. infAP was calculated using the judged and unjudged pool by sample_eval

## Finishers: 13 out of 29

|  |  | M | F |
| :--- | :--- | :---: | :---: |
|  | CMU; Beijing U. of Posts and Telecommunication; U. <br> Autonoma de Madrid; Shandong U.; Xian JiaoTong U. <br> Singapore | - | 4 |
| kobe_nict_siegen | Kobe U.; Japan National Institute of Information and <br> Communications Technology, Japan U. of Siegen, <br> Germany | 3 | - |
|  | Dept. of Informatics, The U. of Electro-Communications, <br> Tokyo | 2 | - |
| ITI_CERTH | Inf. Tech. Inst., Centre for Research and Technology <br> Hellas | 4 | 4 |
| ITEC_UNIKLU | Klagenfurt U. | - | 3 |
| NII_Hitachi_UIT | Natl. Inst. Of Info.; Hitachi Ltd; U. of Inf. Tech.(HCM-UIT) | - | 4 |
| IMOTION | U. of Basel, Switzerland; U. of Mons, Belgium; Koc U., | 2 | 2 |
| MediaMill | Turkey | - | 4 |
| Vitrivr | U. of Amsterdam Qualcomm | 2 | 2 |
| Waseda | U. of Basel | 4 | - |
| VIREO | Waseda U. | City U. of Hong Kong | 3 |
| EURECOM | EURECOM | - | 4 |
| FIU_UM | Florida International U., U. of Miami | 2 | - |

## Inferred frequency of hits varies by query

Inf. Hits / query


## Total true shots contributed uniquely by team



## 2016 run submissions scores (22 Manually-assisted runs)



## 2016 run submissions scores (30 Fully automatic runs)



## Top 10 infAP scores by query (Manually-assisted)



Top 10 infAP scores by query (Fully automatic)


## Statistical significant differences among top 10 " M " runs (using randomization test, $\mathrm{p}<0.05$ )

D_Waseda.16_2
> D_Waseda.16_3
> D_kobe_nict_siegen.16_3
> D_kobe_nict_siegen.16_1
> D_IMOTION.16_1
> D_IMOTION.16_2
> D_vitrivr.16_1
> D_VIREO.16_5
> D_Waseda.16_4
> D_kobe_nict_siegen.16_3
> D_kobe_nict_siegen.16_1
> D_IMOTION.16_1
> D_IMOTION.16_2
> D_vitrivr.16_1
> D_VIREO.16_5

D_Waseda.16_1
> D_Waseda.16_3
> D_kobe_nict_siegen.16_3
> D_kobe_nict_siegen.16_1
> D_IMOTION.16_1
> D_IMOTION.16_2
> D_vitrivr.16_1
> D_VIREO.16_5

| Run | Inf. AP score |
| :--- | :---: |
| D_Waseda.16_2 | $0.177^{*}$ |
| D_Waseda.16_1 | $0.1699^{*}$ |
| D_Wased.16_4 | $0.164 \#$ |
| D_Waseda.16_3 | 0.156 \# |
| D_kobe_nict_siegen.16_3 | $0.047 \wedge$ |
| D_IMOTION.16_1 | $0.047 \wedge$ |
| D_kobe_nict_siegen.16_1 | $0.046 \wedge$ |
| D_MOTON.16_2 | $0.046 \wedge$ |
| D_vitrivr.16_1 | $0.044 \wedge$ |
| D_VIREO.16_5 | $0.044 \wedge$ |

## Statistical significant differences among top 10 "F" runs (using randomization test, $\mathrm{p}<0.05$ )

|  |  |
| :--- | :--- |
| Run | Inf. AP score |
| D_NII_Hitachi_UIT.16_4 | 0.054 |
| D_ITI_CERTH.16_4 | 0.051 |
| D_ITICERTH.16_3 | 0.051 |
| D_ITICERTH.16_1 | 0.051 |
| D_NII_Hitachi_UIT.16_3 | 0.046 |
| D_NII_Hitachi_UIT.16_2 | 0.043 |
| D_NII_Hitachi_UIT.16_1 | 0.043 |
| D_IIICCERTH.16_2 | 0.042 |
| E_INF.16_1 | 0.040 |
| D_VIREO.16_6 | 0.038 |

No statistical significant differences among the top 10 runs

## Processing time vs Inf. AP ("M" runs)



## Processing time vs Inf. AP ("F" runs)



## 2016 Observations / Questions

- Most teams relied on intensive visual concept indexing, leveraging on past SIN task and similar like ImageNet, Scenes ...
- Combined with manual or automatic query transformation
- Clever combination of concept scores (e.g. Waseda)
- Ad-hoc search is more difficult than simple concept-based tagging.
- Big gap between SIN best performance and AVS: maybe performance should be better compared with the "concept pair" task within SIN
- Manually-assisted runs performed better than fully-automatic.
- Most systems are not real-time (slower systems were not necessarily effective).
- Some systems reported 0 time!!!
- E and F runs are still rare compared to A and D
- Was the task/queries realistic enough?!
- Do we need to change/add/remove anything from the task in 2017 ?


## Continued at MMM2017



- 10 Ad-Hoc Video Search (AVS) tasks, 5 of which are a random subset of the 30 AVS tasks of TRECVID 2016 and 5 will be chosen directly by human judges as a surprise. Each AVS task has several/many target shots that should be found.
- 10 Known-Item Search (KIS) tasks, which are selected completely random on site. Each KIS task has only one single 20-seconds long target segment
- Registration for the task is now closed


## 9:20-12:00 : Ad-hoc Video Search

- 9:20-9:40, Task Overview
- 9:40-10:00, NII_Hitachi_UIT (National Institute of Informatics; Hitachi; U. of Inf. Tech.)
- 10:00-10:20, ITI_CERTH (Centre for Research and Technology Hellas)
- 10:20-10:40, Break with refreshments
- 10:40-11:00, Waseda (Waseda University)
- 11:00-11:20, kobe_nict_siegen (Kobe U.; Japan National Institute of Inf. and Communications Tech.;U. of Siegen)
- 11:20-11:40, INF (Carnegie Mellon University, University of Technology Sydney, Renmin University of China, Shandong University)
- 11:40-12:00, AVS discussion

