

Kobe University, NICT and University of Siegen at TRECVID 2016 AVS Task

Yasuyuki Matsumoto, Kuniaki Uehara (Kobe University), Takashi Shinozaki (CiNet, NICT) Kimiaki Shirahama, Marcin Grzegozek (University of Siegen)

Contribution

Overview

A method of using small-scale neural network to greatly accelerate concept classifier training (hours -> minutes).

Transfer learning can acquire temporal characteristics efficiently by combining both small networks and LSTM.

Evaluate the effectiveness of using unbalanced examples at the time of training.

icro Neural Networks

- Binary classifier: just discriminate exist or not
- Very simple network structure
 - 4096 input units, 32 hidden units, 2 output units

FC7

(15th layer)

- Fully-connected each other
- Recent DNN technique
 - ReLU and Dropout for hidden layer outputs

 $\sim \mathcal{N}$

Pros

- Much faster
- Learn iteratively
- Easy to extend

Cons

J sec / concept

• Less precise a llittle

Curriculum Transfer

- Firstly, output values of microNNs with target concepts are normalized
- Then, Search Score is calculated as the average among the outputs

Concepts

→ Results

- MicroNNs are worked efficiently
 - \succ Easy to use, and so-so results
 - Enough speed for plenty of concepts
- Unbalanced condition is better than balanced
 - Should not persist data balance
- LSTM is also worked correctly

• Summation is more robust than multiplication of outputs

Future works

- More temporal resolution for LSTM: 1 fps \Rightarrow 5 fps or more
- Utilize outputs of several types of CNNs: Scene CNN, Optical flow etc.

Correspond: Takashi Shinozaki (tshino@nict.go.jp) TRECVID 2016, Nov 14-16, NIST, Washington DC, US