TRECVID 2016 Workshop

WHU-NERCMS at TRECVID2016: Instance Search Task

Z. Wang, Y. Yang, S. Guan, C. Han, J. Lan, R. Shao, J. Wang, C. Liang

National Engineering Research Center for Multimedia Software, School of Computer, Wuhan University National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences

November 14, 2016 NIST

OIntroductionOOOProblem and Motivation

Proposed Approach Framework and Details

Results 4 runs

≣

Conclusion

Previous topics

		$\operatorname{Target}(\operatorname{topic})$	Average AP $[1, 4]$	Max AP [1, 4]
BoW	rigid objects	a no smoking logo (9069)	0.29	0.88
DOW	ligid objects	this David magnet (9085)	0.24	0.81
	non rigid objects	this man (9084)	0.03	0.29
	non-rigid objects	Aunt Sal (9096)	0.01	0.04
BoW+CNN	rigid objects	this starburst wall clock (9153)	0.42	0.91
DOW-ONN	rigid objects	this picture of flowers (9157)	0.44	0.88
	non-rigid objects	this bald man (9143)	0.04	0.19
	non-rigid objects	this shaggy dog (9139)	0.01	0.01

Topics in this year

How to find the specific person?

How to find the specific location?

How to fuse the person and scene results?

How to find the specific location?

How to fuse the person and scene results?

Introduction

How to fuse the person and scene results?

Introduction

1

Introduction


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Introduction Problem and Motivation
	Proposed Approach Framework and Details
	Results 4 runs
	Conclusion





#### Proposed Approach – Face recognition

## **Face detection**

- Scale-Adaptive Deconvolutional Regression face detection network
- Use the pretrained VGG16 model to initialize the network
- two regression layers + softmax layer

# **Face identification**

- 9 convolutional layers, 5 pooling layers, 2 fully connected layer
- Softmax and triplet cost are combined
- Trained in our collected IVA-WebFace with 80 thousand identities and each has about 500-800 face images.



Y. Zhu, J. Wang, C. Zhao, H. Guo and H. Lu. Scale-adaptive Deconvolutional Regression Network for Pedestrian Detection, ACCV, 2016. Haiyun Guo, et al. Multi-View 3D Object Retrieval with Deep Embedding Network, ICIP, 2016.

## **Face library**

- Search the keyword EastEnders in Bing
- Our own face library includes 815 face images





### Proposed Approach – Face recognition

# DEMO



# **Multiple objects retrieval**

2

 Through identifying typical objects in a certain topic scene, we can seek out shots of this scene indirectly



	2016				
Machine memory	256G				
SIFT feature extraction	1 in every 10 frames based on original videos				
Number of SIFT points for codebook training	100 million clustered without unrelated shots				

## **Global scene retrieval**

- Global feature: the output of the fully connected layer
- ResNet-152 model pre-trained by Facebook AI Research



Scene	the number of probe images of each scene
cafe1	12
cafe2	12
foyer	6
kitchen1	6
kitchen2	6



### Proposed Approach – Local View + Global View

# DEMO



# **Non-target face filter**

- 217,894 shots are deleted
- 851 ground truth shots deleted
- 822 of them are recovered with expanding shots
- Up to 46% of original video shots are filtered



(a) shot209_497

(b) shot33_2216

#### Due to non-front and occlusion, some ground truth shots are filtered by mistake.

# Non-target scene filter

- Global feature: the output of the fully connected layer
- ResNet-152 model pre-trained by Facebook AI Research
- We filter 5592 shots

Scene	the number of probe images of each scene				
cafe1	12				
cafe2	12				
foyer	6				
kitchen1	6				
kitchen2	6				
kitchen3	6				
laundrette	12				
living room1	6				
living room2	6				
living room3	6				
market	12				
pub	12				



#### Proposed Approach - Filtering

### Irrelevant object categories filter

- 37 categories about vehicles, such as ambulance, minibus and police van
- 52 categories only appear outdoor, such as hippopotamus, Indian elephant and castle
- We totally delete 19,244 shots



http://imagenet.stanford.edu/synset?wnid=n03417042

### Previous groundtruth filter

- Some landmark objects only appear in a specific location.
- Some objects must not be contained in the topics of this year.
- We filter 12,006 shots

			Location									
year	NO.	topic	cafe1	cafe2	foyer	ki tchen1	kitchen2	laund	LR1	LR2	market	pub
13	9069	a circular 'no smoking' logo	1	1	0	0	0	0	0	0	1	1
	9070	a small red obelisk	0	0	0	0	0	0	0	2	0	0
	9071	an Audi logo	0	0	0	0	0	0	0	0	0	0
	9072	a Metropolitan Police logo										
	9073	this ceramic cat face	0	0	0	2	0	0	0	0	0	C
	9074	a cigarette										
	9075	a SKOE can										
	9076	this monochrome bust of Qu	0	0	0	0	0	0	0	0	0	2
	9077	this dog										
	9078	a JENKINS logo	0	0	0	0	0	0	0	0	0	2
	9079	this CD stand in the market	0	0	0	0	0	0	0	0	0	0
	9080	this public phone booth	0	0	0	0	0	0	0	0	0	0
	9081	a black taxi	0	0	0	0	0	0	0	0	0	C C
	9082	a BMW logo	0	0	0	0	0	0	0	0	0	0
	9083	a chrome and glass cafetier	e									
	9084	this man										
	9085	this David refrigerator magn	0	0	0	0	0	0	0	0	0	0
	9086	these scales	0	0	0	0	0	2	0	0	0	C
	9087	a VW logo	0	0	0	0	0	0	0	0	0	0
	9088	Tamwar										
	9089	this pendant										
	9090	this wooden bench with rou	0	0	0	0	0	0	0	0	0	C
	9091	a Kathy's menu with stripes	0	2	0	0	0	0	0	0	0	6
	9092	this man										
	9093	these turnstiles	0	0	0	0	0	0	0	0	0	0
	9094	a tomato-shaped ketchup d	0	2	0	0	0	0	0	0	0	0



# Score adjustment and Result expansion

- The scene in TV series is likely to be blocked by the person, which causes the similarity scores of such shots are not high.
- we find high-score shots with high slope of the score curve, and adjust those missed low-score shots among adjacent high-score shots.



2





(b) shot192_1201



#### (c) shot192_1205

# **Result fusion**

 three score vectors which have values from 0 to 1





 Introduction Problem and Motivation
 Proposed Approach Framework and Details
 Results 4 runs
 Conclusion



### **Description of our methods**

Abbreviation	Method
F	Shots <b>F</b> ilter
R	Face <b>R</b> ecognition
С	CNN Based Scene Retrieval
В	BoW Based Scene Retrieval
А	Score Adjustment and Result Expansion
Т	Text script search and Speaker identification
Р	Previous Groundtruth Cues

### **Results of our submitted 4 runs**

ID	MAP	Method
F_ NO_ NERCMS_1	0.758	F+R+C+B+A+T+P
F_ NO_ NERCMS_2	0.632	F+R+C+B+A
F_NO_NERCMS_3	0.135	R+C
F_ NO_ NERCMS_4	0.172	R+B



IntroductionProblem and Motivation

**Proposed Approach** Framework and Details



4 runs



- **1** Specific person: Face recognition + Face library
- 2 Specific scene: Local view (BoW) + Global view (CNN)
- **3 Result combination: Score adjustment + Results expansion**
- 4 Shots filter: Non face + Outdoor scene + Groundtruth





### Text script retrieval and Speaker identification

- Text script: for the target person Jim, the retrieval keywords are Brads, Stace, Stacey, Bradley, Dot, because they are family
- 412 audio library: target persons-6 voice segments of each person, the rest 93 persons-4 voice segments of each person
  MFCC feature of all voice segment



(a) shot5_1269



(b) shot10_279



(a)  $shot63_1614$ 

(b) shot76_147