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Motivation Bounding-Box Annotations

e Localization task now includes not  For static objects, annotated on a key-frame for each
only static object, but also some positive shot
action concepts » 31K boxes on 26K shots
» We focus on “SittingDown”, one of IR  For SittingDown, frame-wisely
action concepts | L L annotated to train LSTM
» Hard to distinguish from still Sitting Sl }H‘ * 515 boxes on 92 shots
only with static image input Sitting SittingDown
» Utilizing dynamic information Is
Important to detect it precisely

Our System
Faster R-CNN ren 2015) y

 Efficient End-to-End object localizer
» Generate region proposals from
sparse sliding windows by a
network itself
» Predict each region using CNN

features generated while Multi-Shot Score

Long-Short Term
M emo ry (Donahue 2015)

* Widely used for action detection
* Applied only to SittingDown
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* We use ZF Net (Zeiler 2014) SE[ Fusion B00StINg (noue 2015)
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Results
Isystemoutput | * We archived 2™ among all 3 teams
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A dog Is about to move, Faster R-CNN failed to detect oo® S

« We got the best for SittingDown _Scores of SittingDown

e LSTM with 4096 units did not F-score score

' i-h n | & y n | & '8 ;L n | . . %
Many small objects, Fusion and Boost are failed to detect WOrk, see_ms_ over-fitted . Without !‘STM | 0.63 0.22
o After submission, we confirmed LSTM with 4096 units* 0.00 0.00
SittingDown (Re-trained LSTM 64 units) LSTM with 64 units works well LSTM with 64 units 11.96 4.51
Good cases Bad cases Methods with * are submitted
Conclusion

» We achieved 2" among all 3 teams
» Best for SittingDown, LSTM did not work totally
» After submission, we confirmed LSTM works well

Future Work

Sitting down Moving with sitting ~ Passing in front of chair * Find better way to detect SittingDown
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Multimedia Event Detection Using Deep Features and LSTM
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Proposed Method: Deep Features + LSTM

We propose a system using deep features and LSTM

Motivation: Unless CNN, LSTM can make use of sequential information,which makes it applicable to MED.
Event detection framework:

Step 1. Extract deep features for each frame of input video

Step 2. Input deep features into an LSTM
There are 21 classes of the LSTM: 20 events and background.

Output Probabilities for each event
Average
* 1x21 * 1x21 t 1x21 * 1x21
Softmax Softmax Softmax Softmax

Deep Feature Deep Feature Deep Feature SN Deep Feature

.“

Experiments 60
Experimental Settings

50 BLSTM
_
- Extract frame every two seconds. 40 SVM
- Deep features [1,2] are extracted from the pool5
layer of GoogLeNet trained on ImageNET ig
- Dimension of deep feature: 1,024 X

- Compare LSTM (256 units) and SVM TestSet EvalSub EvalFull
Comparison of SVM and LSTM
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Comparison with other teams (PS 10EX) Comparison with other teams (PS 100EX)
Conclusion
can SVM results are greatly better than the LSTM
R s D results in evaluation set while in test dataset
Top 1 for “Attempting a bike trick” (SVM) the gap between these two methods were not
ey PR — == . — thathuge, which may because LSTM is
P v e -~ <=5, o sensitive to the difference between LDC

dataset (training and test) and YFCC dataset
(evaluation).

Top 1 for “Attempting a bike trick” (LSTM)
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