

BUPT-MCPRL@TRECVID 2016: Multimedia Event Detection

Rui Xiang, Zhicheng Zhao, Fei Su, Shizhe He

Multimedia Communication and Pattern Recognition Labs, Beijing University of Posts and Telecommunications (BUPT-MCPRL)

hgjngh123@bupt.edu.cn

Chapter Structure

MED Review

Framework Introduction

- introduction of methods
- experiments result
- conclusions and discussions
- Our Results

MED Review

Our results last year :

Testing on MED15-PS-EvalSub (using infAP200)

Task	10EX	100EX
our result	0.087	0.155
other teams' best result	0.303	0.365

- It's the 1st time we take part in the MED task.
- The Events are complex, so the method should be robust enough.
- The method should not rely on large scale training samples

Our performance this year :

Testing on MED16 Pre-Specified Events (using MAP)

Teams	PS_SUB_10EX	PS_SUB_100EX	Platform
Our p-baseline	0.336	0.469	SML
Our c-contrast(Progress)	0.354	0.490	SML
Etter	0.014		SML
INF	0.298		SML
ITICERTH	0.318	0.462	SML
KU-ISPL	0.209	0.340	SML
MCIS	0.004	0.004	SML
MediaMill(FullAsSub)	0.354		SML
NIIHitachiUIT	0.007		SML
TokyoTech	0.279	0.415	SML
VIREO	0.335	0.419	MED
nttfudan	0.328	0.457	SML

Framework Introduction

key words:

• high performance, high speed, low storage cost

structure of our framework :

strategy:

- p-baseline:choose the best method for each module.
- c-contrast:fuse most effective methods.

Feature Extraction

3 Strategies of CNN feature extraction:

- Global Descriptor extracted from the fc7 or last average pooling layer.
- Dense Local Descriptor extracted from multi-size pooling layers
- Salient Area Descriptor extracted from a fast Region Proposal Network.

Dense Local Descriptor

The local descriptors provide different areas' information like a sliding window moving on the image.

Salient Area Descriptor

Experiment on strategies of feature extraction

method	Storage Cost	Precision(MAP)
Global	13G	0. 481
Dense	367G	0. 496
Salient	46G	0.495

train: 800 videos test: 7230 videos

- We choose the dense local descriptors as our baseline methods for its best performance and simple form.
- Salient method is also competitive for its low storage cost without significant drop of result.

CNN Model Selection:

Inception

residual

- The inception structure provides ability of fast compute
- The residual network can be very deep and more precise

Video Representation and Classification

Baseline Methods:

- VLAD for video representation
- SVM for video classification

Extending Methods:

- FisherVector
- Rank SVM
- LSTM
- netVLAD
- temporal kernel CNN

Video Representation

k-nearest assignment VLAD :

$$v_{i,j} = \frac{1}{N} \sum_{n=1}^{N} \alpha_i (x_j^{(n)} - c_{i,j})$$

 $dist(x, c_i) = \sum_{i=1}^{D} (x_i - c_{i,i})^2$

$$\alpha_{i} = \begin{cases} \frac{\exp\left(-\gamma dist(x,c_{i})\right)}{\sum_{j=1}^{K} \exp\left(-\gamma dist(x,c_{j})\right)} &, dist(x,c_{i}) \in topk \left\{ dist(x,c_{j}) \right\} \\ 0 &, dist(x,c_{i}) \notin topk \left\{ dist(x,c_{j}) \right\} \end{cases}$$

VLAD encode The residuals of samples to nearest clusters are storaged.

The explanation of the VLAD Every attribute of a video will be comapred when we calculate the distance.

Video Classification

Score prediction:

Experiments

• Comparision between different video representations:

Method Name	Result(MAP
VLAD	0.232
FisherVector	0.228
Rank SVM	<0.1
C3D(without re-training)	<0.1

dataset: MED14_Progress model: VGG16 train: 5030 videos test: about 30000 videos

• Comparision between Deep learning methods:

Method Name	Result(MAP)
VLAD+SVM (p-baseline)	0.640
LSTM	0.382
netVLAD	0.525
Temporal convolution	0.565

dataset: MED16_TRAIN model: GoogleNet12988c train: 7230 videos test: 800 videos

Our p-baseline method outperfoms others by a large margin

discussions

• The Temporal Convolution structure is very potential.

 Deep learning methods may benefit from a end to end video classification modle. This can be realized by combining Spatial Convolution and Temporal Convolition.

Our Results

Result(MAP)	PS_SUB_10EX	PS_SUB_100EX	Platform
Our p-baseline	0.336	0.469	SML
Our c-contrast(Progress)	0.354	0.490	SML

10EX 100EX

Thank You !

http://mmc.sice.bupt.cn

