

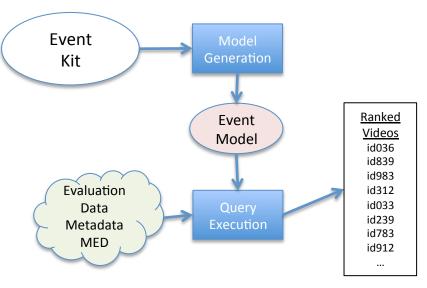
TRECVID 2016 Workshop National Institute of Standards and Technology Multimedia Event Detection Task

Nov. 15, 2016

David Joy, Jonathan Fiscus, Andrew Delgado

MED Session Schedule

9:00 – 11:20	Tuesday, Nov. 15
9:00 – 9:20	MED Task Overview
9:20 – 9:40	VIREO (City University of Hong Kong)
9:40 – 10:00	INF (Carnegie Mellon U.; Beijing U. of Posts and Telecommunication; U. Autonoma de Madrid; Shandong U.; Xian Jiatong U.; Singapore Management U.)
10:00 - 10:20	MediaMill (University of Amsterdam)
10:20 - 10:40	Break
10:40 - 11:00	BUPT-MCPRL (Beijing University of Posts and Telecommunications)
11:00 – 11:20	MED Discussion


Multimedia Event Detection Task

Multimedia Event Detection (MED)

Quickly find instances of events in a large collection of search videos

A MED event is a complex activity occurring at a specific place and time involving people interacting with other people and/or objects

Notional System Diagram

Evaluation Conditions

Execution Hardware Reporting

- 3 Classes of Computing Hardware
- Small: 100 CPU cores, 1,000 GPU cores
- Medium: 1,000 CPU cores, 10,000 GPU cores
- Large: 3,000 CPU cores, 30,000 GPU cores

Query Training Conditions

	Number of Exemplars		
Pre-Specified Events	0	10	100
Ad-Hoc Events		10	
Interactive Ad-Hoc Events		10	

Search Collection

- MED16Eval-Full -> 198K videos, 4,738 hours
- MED16Eval-Sub -> 32K video subset, 783 hours

MED '16 Overview

- MED evaluations from 2010-2016
 - Supported by the IARPA Aladdin Program and LDC collected data
 - Several simplifications in 2015, which were continued in 2016
- What's new in MED 2016
 - Introduction of new test dataset, a subset of the *Yahoo! Flickr Creative Commons 100 Million (YFCC100M) videos
 - 10 new Ad-Hoc events

^{* -} Disclaimer: Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply recommendation or endorsement by the National Institute of Standards and Technology.

Standards and Technology.

Standards and Technology.

U.S. Deportment of Commence of

The TRECVID MED 2016 Events

Pre-Specified Events		Ad-Hoc Events
MED '14 PS Events	MED '14 AH Events	New Events
Attempting a bike trick	Beekeeping	Camping
Cleaning an appliance	Wedding shower	Crossing a Barrier
Dog show	Non-motorized veh. repair	Opening a Package
Giving directions to a location	Fixing musical instrument	Making a Sand Sculpture
Marriage proposal	Horse riding competition	Missing a Shot on a Net
Renovating a home	Felling a tree	Operating a Remote Controlled Vehicle
Rock climbing	Parking a vehicle	Playing a Board Game
Town hall meeting	Playing fetch	Making a Snow Sculpture
Winning a race without a vehicle	Tailgating	Making a Beverage
Working on a metal crafts project	Tuning musical instrument	Cheerleading

Example Event Kit

Operating a Remote Controlled Vehicle

Definition:

An individual operates a vehicle remotely with a controller

Explication:

Remote controlled vehicles are self-propelled machines that are powered by a motor or engine of some kind and whose movement is controlled from a distance by human inputs to a remote control device ...

Evidential Description:

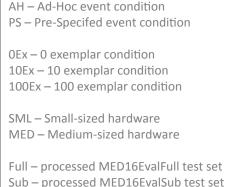
- scene: indoors or outdoors
- <u>objects/people</u>: remote control vehicles (cars, trucks, planes, helicopters, trains, etc.), remotes, antennas, race track, plastic takeoff ramp
- <u>activities</u>: directing remote control vehicles, turning on vehicles, crashing vehicles
- <u>audio</u>: engines revving, motor whirring, explanation of type of vehicle, discussion of where the vehicle is going or could go, discussion of what is seen on a video feed from the vehicle

Illustrative Examples

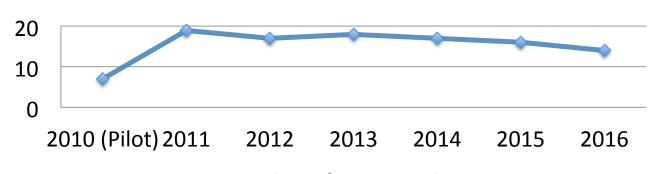
- Positive instances of the event
- Non-Positive "miss" clips that do not contain the event

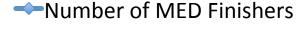
U.S. Department of Commercia

The Test Data

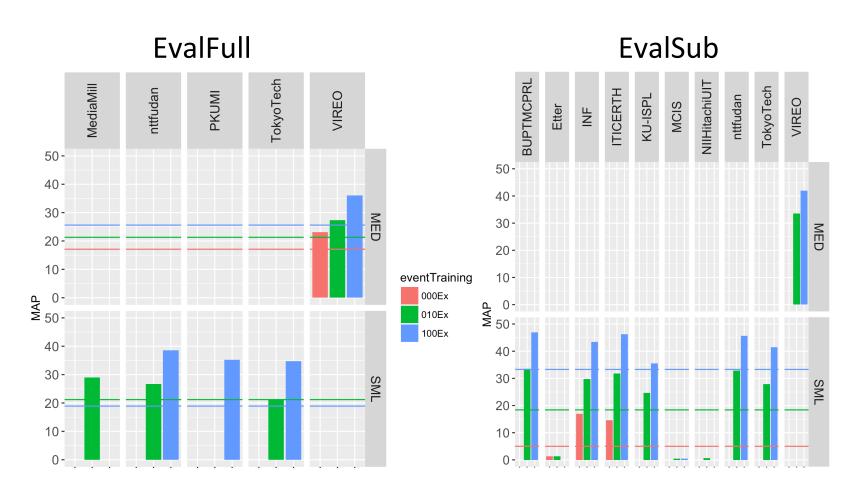

Data collection	Test set	# of videos	Duration (Hrs)	Avg. duration (Secs)
HAVIC	MED16EvalFull	98,003	3,713	136
Progress	MED16EvalSub	16,000	620	139
YFCC100M Subset	MED16EvalFull	100,000	1,025	37
	MED16EvalSub	16,000	163	37
Total	MED16EvalFull	198,003	4,738	86
	MED16EvalSub	32,000	783	88

HAVIC Progress

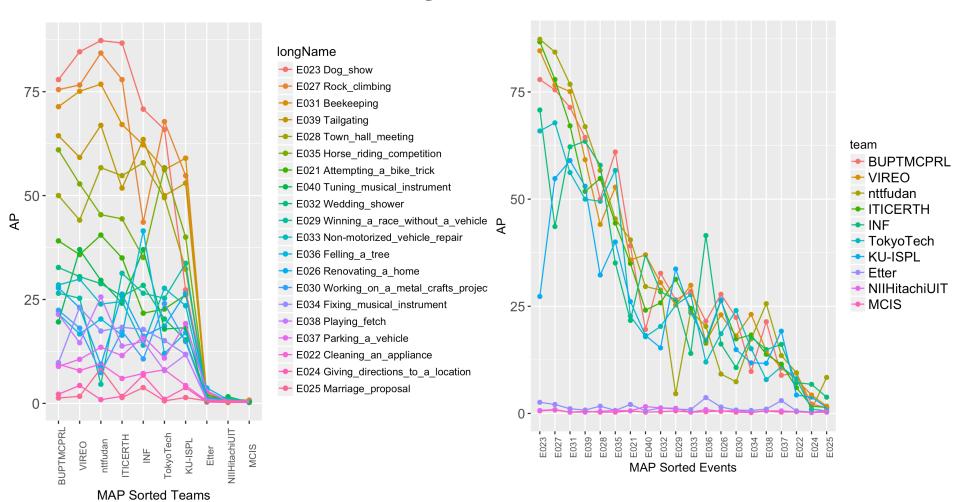

- Engineered target richness
- Controlled sampling of Internet video domain
- YFCC100M Subset
 - Random selection*
 - Shorter duration videos


12 MED 2016 Finishers By Condition

- Red outline indicates a required condition

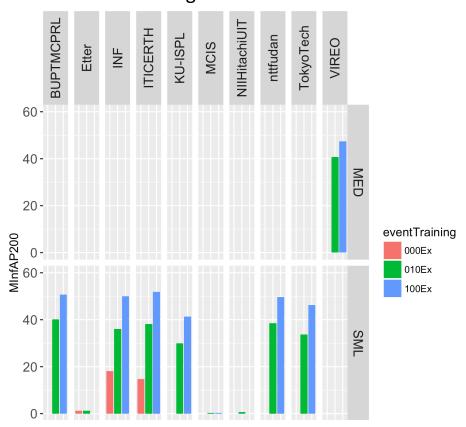


Pre-Specified Event MAP


Primary Systems – HAVIC Progress Subset

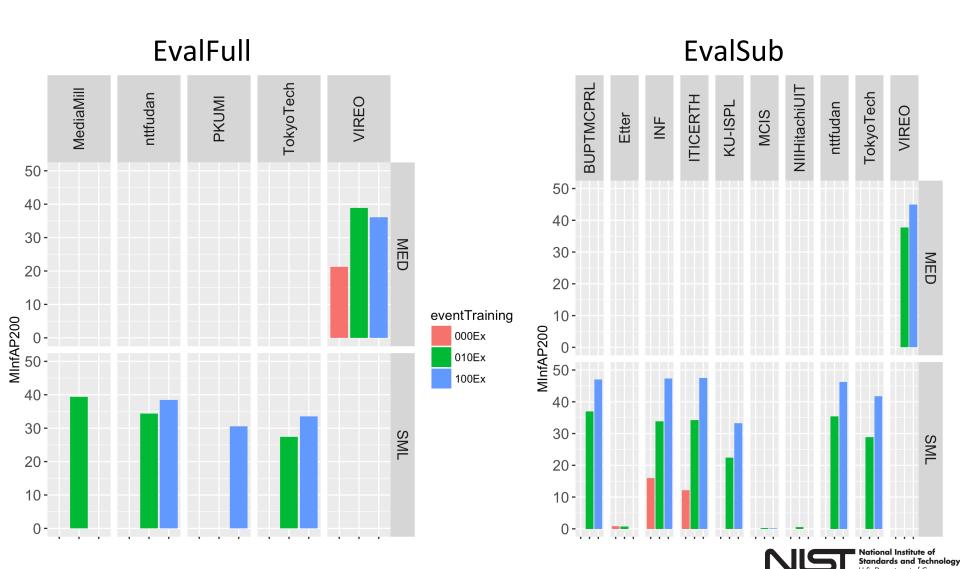
MAP (EvalSub-ProgressSubset) = 1.02*MAP(EvalFull-ProgressSubset) + 5.96R^2=0.996

Pre-Specified AP by System and Event


Primary Systems – 10Ex – MED16EvalSub – Mixed System Size Progress Subset

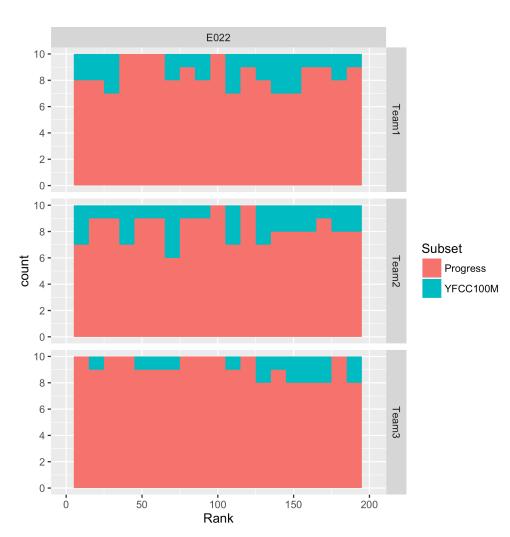
MAP → Mean Inferred Average Precision (MInfAP)

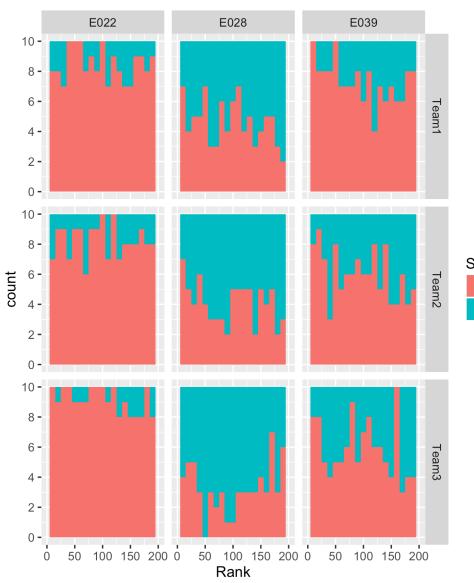
- Follows Aslam et al. procedure, Statistical Method for System Evaluation Using Incomplete Judgments Proceedings of the 29th ACM SIGIR Conference, Seattle, 2006.
 - Stratified, variable density, pooled assessment procedure to approximate MAP
- MInfAP in the 2016 evaluation
 - Progress MAP and MInfAP200 (simulated) on PS and AH
 - Progress + YFCC100M MInfAP200 on PS and AH
- For MED '15, NIST ran experiments with 2014 data to optimize the strata sizes and sampling rate. This same sampling rate was used for MED '16
 - Define 2 strata
 - 1-60 -> 100 %
 - 61-200 -> 20 %


Pre-Specified EvalSub Simulated MInfAP200
Progress Subset

PS-EvalSub-ProgressSubset -- MInfAP200 (Simulated) = 1.14*MAP + 0.421R^2=0.99

Pre-Specified Event MInfAP200

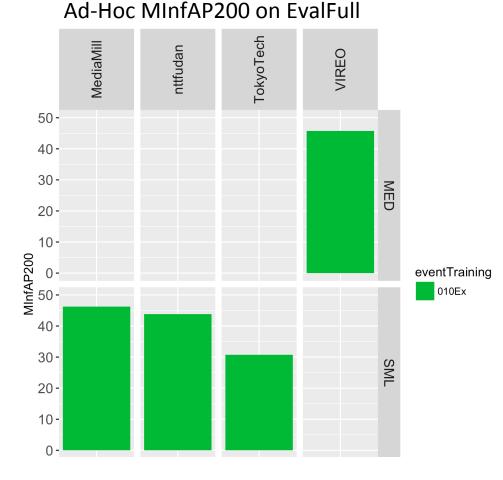

Progress + YFCC100M


Performance on HAVIC vs. Yahoo!

Our Attempt to Score Precision@10

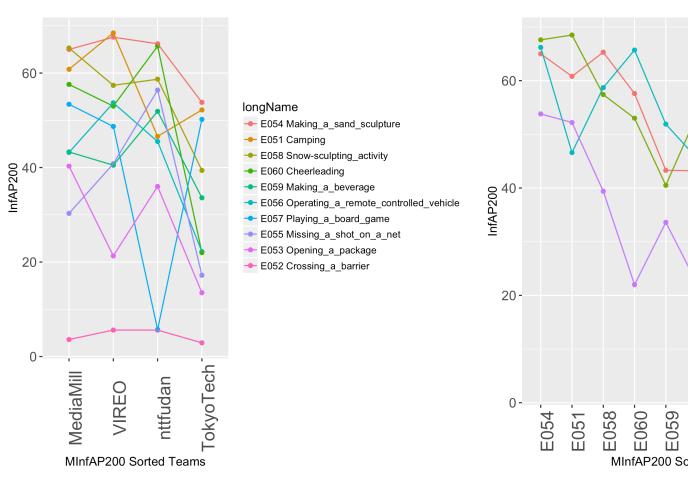
- Unable to score Precision
 @ 10 for both HAVIC and Yahoo!
 - Stratified sampling did not yield sufficient judgements
- For example:
 - E022 Cleaning an appliance
 - Proportion of subset of top 200 clips, binned by rank
 - Teams shown are representative based on MInfAP200 scores

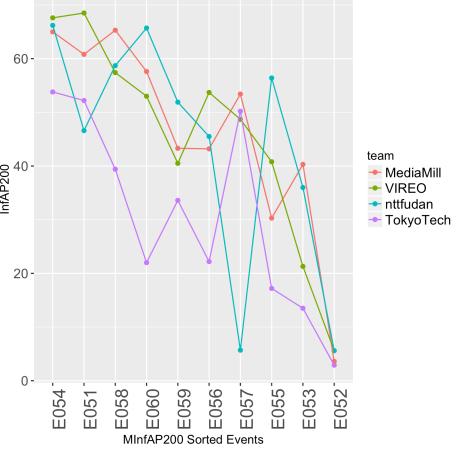
Performance on HAVIC vs. Yahoo! Good, Bad, Ugly Events


Event	AP(top5)	Description
E022	8.42	Cleaning an appliance
E028	53.78	Town hall meeting
E039	61.4	Tailgating

Subset
Progress
YFCC100M

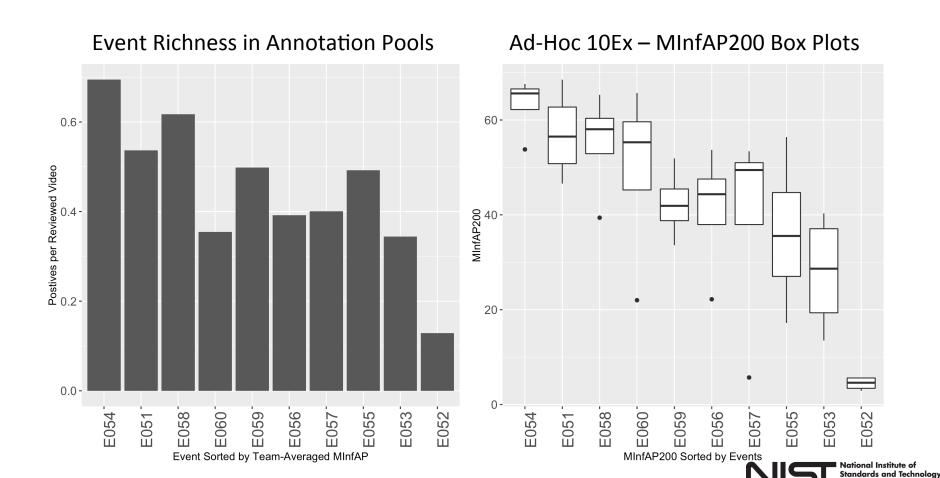
- Stratified random sample not sufficient for heterogeneous data
- We will continue to work on scoring Yahoo! separately


Ad-Hoc Event Results


- 10 new events
 - 10 Exemplar training only
- MED16EvalFull the required condition
- Reference Generation
 - Pooled assessment with using all submissions
 - Strata definition
 - 1:60:100%
 - 61:200:20%

Ad-Hoc InfAP by System and Event

Primary Systems – 10Ex – MED16EvalFull – Mixed System Size



Ad-Hoc Pooled Assessment Event Richness vs. InfAP

	Camping
	Crossing a Barrier
	Opening a Package
	Making a Sand Sculpture
	Missing a Shot on a Net
	Operating a Remote Controlled Vehicle
	Playing a Board Game
	Making a Snow Sculpture
	Making a Beverage
060	Cheerleading

MED '16 Summary

- Pre-Specified Results
 - Only one team built a "Medium" hardware system
 - Most teams processed the subset (783 hr.) test set (MED16EvalSub)
 - Noticeable improvement over last year's Pre-Specified results on Progress
 - Stratified random sampling on heterogeneous data not powerful enough to determine differences in performance
- Ad-Hoc Results
 - Only 4 of 12 teams participated
 - No teams participated in Interactive Event Query test

MED '17 Plans

- NIST intends to continue MED in a streamlined fashion
- NIST to release Progress annotations
- Makeup of data sets TBD, HAVIC + YFCC100M
- Discontinuing support for Interactive Ad-Hoc condition
- Counter-proposals?

Thank you!

Questions?