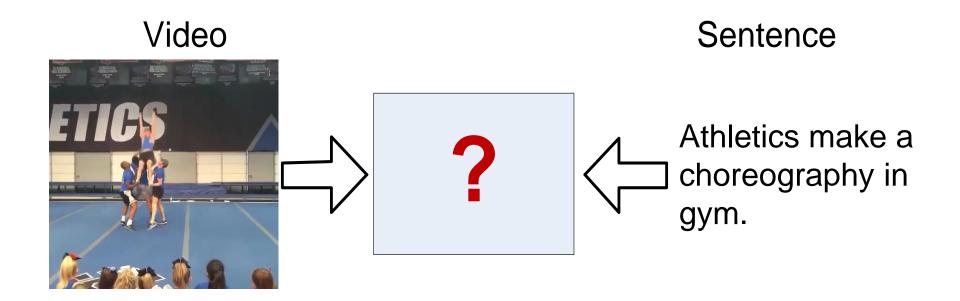

DL-61-86 at TRECVID 2017: Video-to-Text Description

Jianfeng Dong^{1,2}, Shaoli Huang¹, Duanqing Xu², Dacheng Tao¹

UBTECH Sydney AI Centre, SIT, FEIT, University of Sydney
College of Computer Science and Technology, Zhejiang University

Matching and Ranking subtask

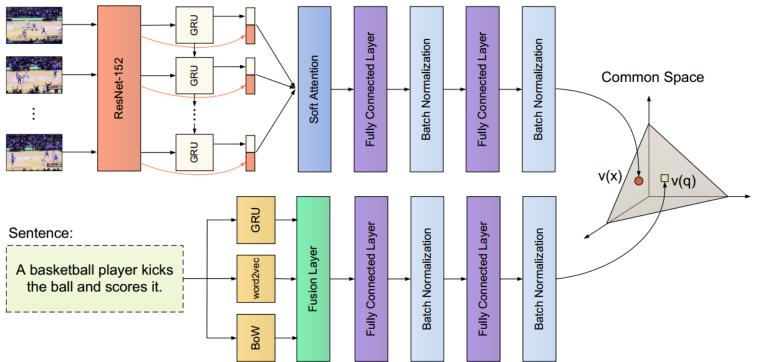
Query Videos:



Candidate sentences to be ranked:

a man speaks to audiences indoors a person skates indoors

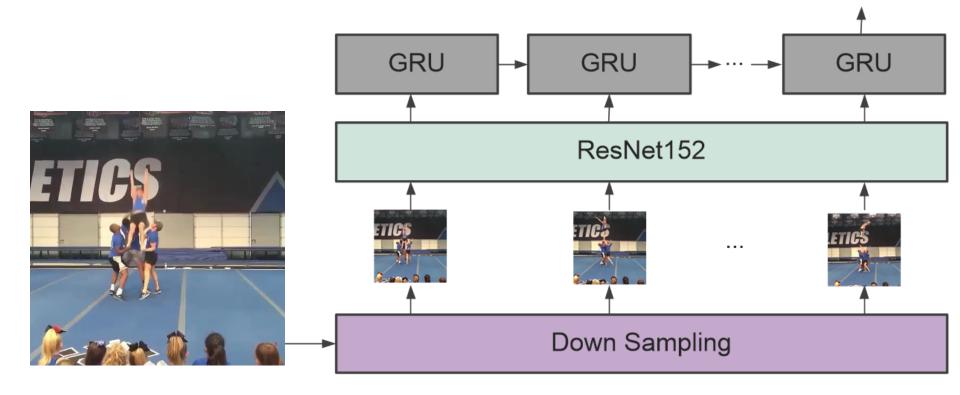
Athletics make a choreography in gym. a woman is holding a phone to her ear.


Cross-media Similarity

Key question: how to compute cross-media similarity?

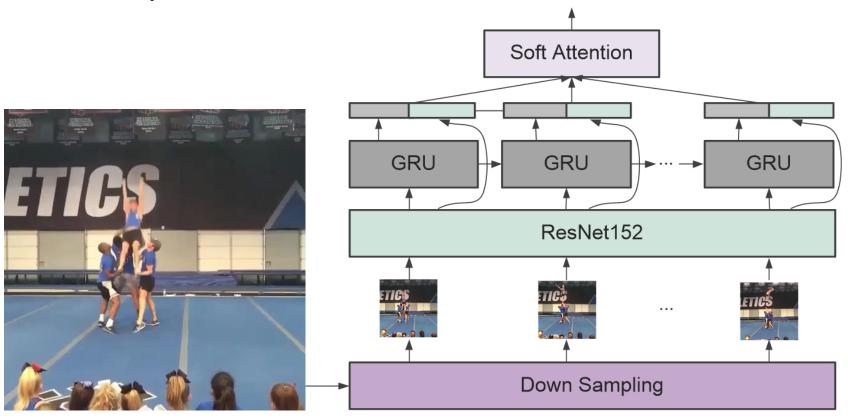
Our Model

Video frames:

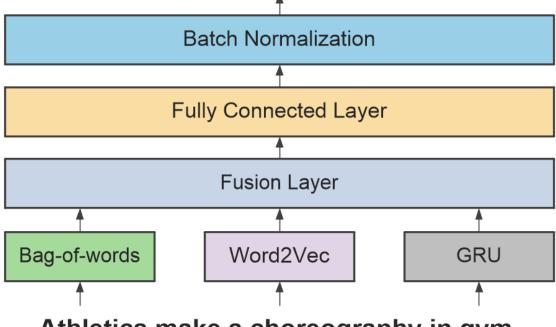


Key components:

- Spatial Enhanced Video Representation
- Multi-scale Sentence Representation


Common way of video representation

Use RNN to capture spatio-temporal information.


Spatial Enhanced Video Representation

Learn a GRU with skip-connections that allow bypassing of the spatial features.

Multi-scale Sentence Representation

It merges bag-of-words, word2vec and GRU sentence features and letting the model figure out the optimal way for combining them.

Athletics make a choreography in gym.

J. Dong, X. Li, and C. G. M. Snoek. Predicting Visual Features from Text for Image and Video Caption Retrieval. arXiv 2017.

Objective Function

Triplet Ranking Loss:

$$l(x,q;\theta) = \sum_{q'} [\alpha + s(x,q') - s(x,q)]_+$$
$$[x]_+ \equiv \max(x,0)$$

Improved Triplet Ranking Loss: (using hardest example)

$$l(x,q;\theta) = \max_{q'} [\alpha + s(x,q') - s(x,q)]_+$$

- 1. Use more training data and fine-tune the model on the data provided by TRECVID
- 2. Use pre-trained word2vec to initialize word embedding before the LSTM/GRU
- 3. Use batch normalization after the FC layer
- 4. Fuse different models

Datasets

	External datasets		
Table 1. Overview of datasets used in our submission.			
	Dataset	# Videos	# Sentences
	MSVD	1,970	80,863
Train	MSR-VTT	10,000	200,000
	TGIF	101,980	125,672
Validation	tv2016train	200	400
Fine-Tune	tv2016test	1,915	3,830
Datasets provides by TRECVID 2016			

- 1. Use more training data and fine-tune the model on the data provided by TRECVID
- 2. Use pre-trained word2vec to initialize word embedding before the LSTM/GRU
- 3. Use batch normalization after the FC layer
- 4. Fuse different models

- 1. Word2vec trained on the Google news documents
- 2. Word2vec trained on the tags of Flickr images

Word2vec with the dimensionality of 500 trained on 30 million Flickr tags.

URL:https://drive.google.com/open?id=0B1OT7LFjhrF_ RWptMjY2TVBqLWc

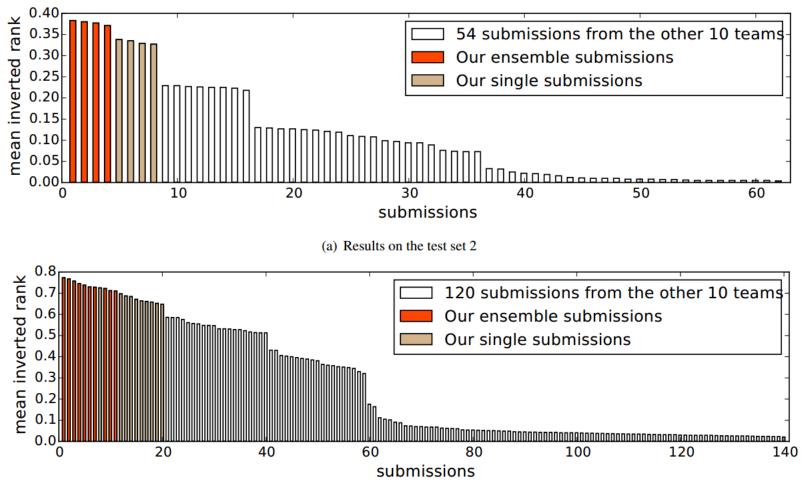
J. Dong, X. Li, and C. G. M. Snoek. Predicting Visual Features from Text for Image and Video Caption Retrieval. arXiv 2017.

- 1. use more training data and fine-tune the model on the data provided by TRECVID
- 2. Use pre-trained word2vec to initialize word embedding before the LSTM/GRU
- 3. Use batch normalization after the FC layer
- 4. Fuse different models

- 1. use more training data and fine-tune the model on the data provided by TRECVID
- 2. Use pre-trained word2vec to initialize word embedding before the LSTM/GRU
- 3. Use batch normalization after the FC layer
- 4. Fuse different models

Fuse with Word2VisaulVec

Model fusion is simple but it is effective.


Improve Word2VisualVec:

- 1. Use multi-scale text representation to embed sentence
- 2. Use the improved triplet ranking loss

C. G. Snoek, J. Dong, et al. University of amsterdam and renmin university at trecvid 2016: Searching video, detecting events and describing video. In *TRECVID Workshop*, 2016.

Evaluation Results

Our submissions lead the evaluation with a great margin.

⁽d) Results on the test set 5

15

Take-home Messages

- Use Spatial Enhanced Video Representation to embed videos
- Use Multi-scale Sentence Vectorization to embed sentences
- Some other wining components
 - 1. use more training data and fine-tune the model on the data provided by TRECVID
 - 2. Use pre-trained word2vec to initialize word embedding before the LSTM/GRU
 - 3. Use batch normalization after the FC layer
 - 4. Fuse different models