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Introduction



A crossmodal system

In 2016, IRISA used a crossmodal system[1]:

• Segmentation step

→ Get segments from whole videos

• Segments/anchors embedding step:

• Comparing and ranking step

→ For each anchor, compare and rank each segment 2



The BiDNN

This system had the best score on P@5
→ Go further with this approach? 3



Segmentation



Motivation

In 2016, we had around 300,000 segments
→ Limited number of segments
→ Problems with the overlap

Create more segments!

Some constraints:
→ The segment should not cut the speech
→ They must last between 10 and 120 seconds
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The method

With a constraint programming framework:

• Keep all the segments that last between 50 and 60 seconds without
cutting the speech

• When there we none, expand the duration between 10 and 120
seconds

1.1 million new segments → 1.4 million segments in total (around 4
times more)
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Representations



Motivation

Our model greatly depends on the quality of the representation of each
modality
→ Can we improve them?

Development set: each triplet (anchor, target, matching) submitted last
year

We extracted/recovered:

• For each anchor, its transcript and one or more keyframes

• For each target, its transcript and one keyframe
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Visual Representation

Embedding of the keyframes using different pre-trained CNNs
(VGG-19[7], ResNet[2], ResNext[9] and Inception[8])

When multiples keyframes, there was an additional step of
keyframe representation fusion:

• Single: Using a single keyframe and discarding the rest

• Avg: The embedding is the average of all of the keyframes
embeddings

• Max: Each feature of the embedding is the maximum of all
keyframes corresponding feature
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Visual Representation

Single Average Max

Models P@5 P@10 P@5 P@10 P@5 P@10
VGG19 41.60 41.27 43.40 41.60 42.60 41.03
Inception 40.40 41.83 41.00 41.39 42.60 41.73
ResNext-101 41.00 39.37 41.40 40.10 41.80 39.90
ResNet-200 43.80 41.57 47.20 44.37 47.60 44.87
ResNet-152 44.40 41.37 45.60 41.67 45.20 40.40

→ We chose to use a ResNet-200 network and a Max keyframe
representation fusion method
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Textual Representation

Same experiments with transcripts:

Models P@5 MAP
Average Word2Vec[5] 44.2 45.3
Doc2Vec[4] 38.4 39.4
Skip-Thought[3] 40.2 41.6

→ We chose to keep Word2Vec.
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Runs description



BiDNNFull - Crossmodal Bidirectional Joint Learning

A bidirectional deep neural network (BiDNN) was trained with ResNet as
a visual descriptor and a Word2Vec as a textual descriptor:

→ BiDNNFull is our baseline for testing other improvements to the
system.
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BiDNNFilter - BiDNN with metadata filter

We chose to keep the list of tags as a filter to compare anchors and
targets that share at least one tag in common. 11



BiDNNFilter - BiDNN with metadata filter

However:

• 77% of videos have tags

• They have a mean number of tags of 4.71

Too restrictive?

Use the text of the descriptions:

• Selection of only verbs, nouns and adjectives

• Lemmatization

• Exclusion of stopwords and hapaxes

→ BiDNNFilter is the same as BiDNNFull but with the addition of the
list of keywords—tags and description—used as a filter.
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BiDNNPinv - Multimodal model with pseudo-inverse

Some issues about the keyframe representation fusion method:
→ Basic treatment of information contained in multiple keyframes

We use the Moore-Penrose pseudo-inverse:

• Capures a notion of movement between multiple keyframes

• Deals with different variations found across all keyframes.

• It can improve the search quality[6].

→ BiDNNPinv is the same as BiDNNFull where the Max function is
replaced by the pseudo-inverse.
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NoBiDNNPinv - Concatenation with pseudo-inverse

Quantify the usefulness of the BiDNN in this system

We replaced the BiDNN by a L2-normalization followed by a
concatenation:

→ NoBiDNNPinv ’s embedding pipeline is described by the picture.
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Results



Results

Runs MAP MAISP P@5 P@10 P@20
BiDNNFull 13.34 10.14 68.80 71.20 42.40
BiDNNFilter 10.81 8.43 76.00 74.40 38.00
BiDNNPinv 15.29 11.52 75.20 74.40 43.40
noBiDNNPinv 12.46 10.16 72.80 73.20 39.60

• BiDNNFilter obtained the best P@5 and P@10 showing the interest
of the filter to increase precision.

• BiDNNPinv obtained the best MAP, MAISP and P@20 showing the
pseudo-inverse gives more precision stability.

• The score difference between BiDNNPinv and noBiDNNPinv
confirms the relevance of the crossmodal model.
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Conclusion



Conclusion

Adding a filter increases the precision

The pseudo-inverse succeeds at capturing relevant information on
multiple keyframes

We can think of future interesting developments:

• Combine both the filter and the pseudo-inverse

• Incorporate the metadata within the neural network, using it as a
third modality

• Use the pseudo-inverse on both anchors and targets
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Thank you for your attention!
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Some good/bad cases

BiDNNFilter:
Good cases

• anchor_131: good description + tags
• anchor_132&137: good description with no tags

Bad cases

• anchor_124: very general tags → not better than BiDNNFull
• anchor_126: only three tags that do not describe the video (grit,

grittv, laura_flanders)
• anchor_141: no tags and a very long description (709 words)

BiDNNPinv:
Good cases

• anchor_141: an anchor with a lot of keyframes?

The bad cases are hard to identify



Moore-Penrose pseudo-inverse

Moore-Penrose pseudo-inverse
Given a set of anchor vectors represented as columns in a d × n matrix
X = [x1, ..., xn] where xi ∈ Rd :

m(X ) = X (XTX )−11n (1)

where 1n is a n dimensional vector with all values set to 1.
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