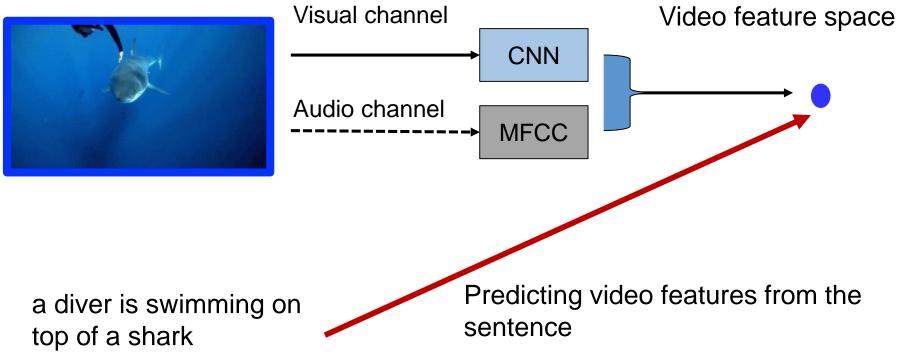
Multi-Scale Word2VisualVec for Video Caption Retrieval

Xirong Li*, Chaoxi Xu*, Cees G. M. Snoek+, Dennis Koelma+

Renmin University of China^{*} University of Amsterdam⁺

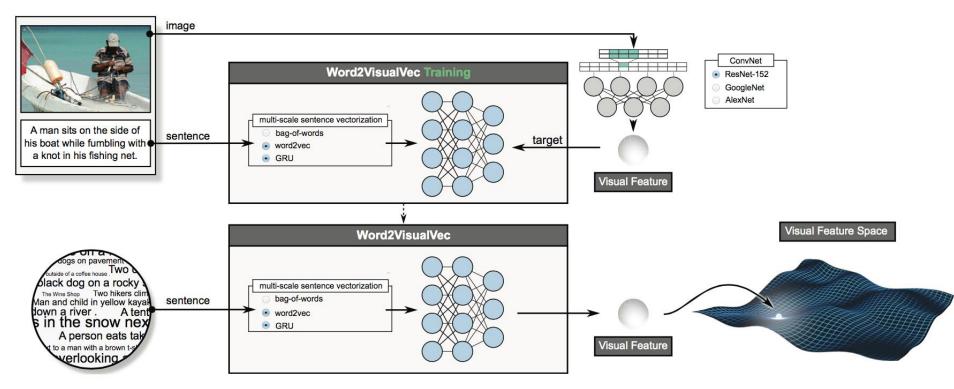
Our idea (as in TV16)

Perform video caption retrieval in a video feature space



Multi-Scale Word2VisualVec

Word, sentence, temporal text encoding -> MLP -> visual feature



J. Dong, X. Li, C. Snoek, Predicting Visual Features from Text for Image and Video Caption Retrieval, Arxiv: 1709.01362, 2017

TV17 Implementation

We improve with better sentence vectorization and better visual feature.

	TV16	TV17		
training set	msrvtt10ktrain	msrvtt10k		
validation set	TV16 training set			
sentence vectorization	word2vec	multi-scale + bag-of-words + word2vec + Gated Recurrent Unit		
visual feature	GoogleNet-shuffle (1024-dim)	ResNext-shuffle (2048-dim)		
audio feature	bag of MFCC (1024-dim)			
MLP architecture	500-1000-2048	11098-2048-3072		

*bag-of-words: 9,574-dim (term freq >=5), word2vec: 500-dim, GRU: 1,024-dim

TV17 Implementation cont.

Post processing

Refine the top rankings by matching with tags predicted by

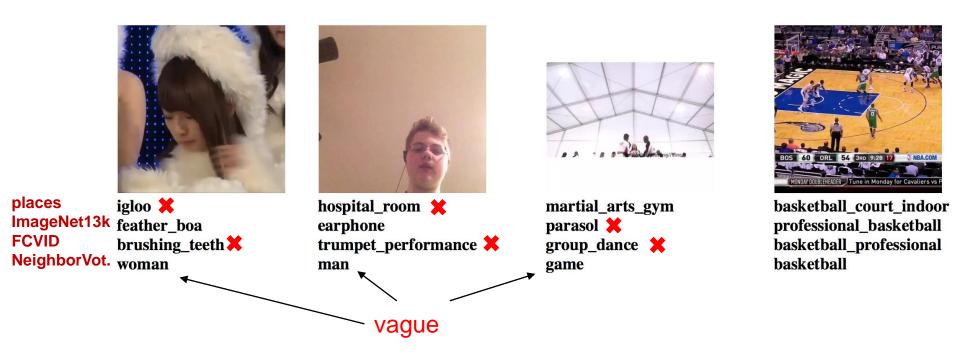
- ResNext-ImageNet13k
- ResNext-Places2
- ResNext-FCVID
- Neighbor Tag Voting using msrvtt10k

Late fusion of two W2VV models: ResNext -ImageNet13k and ResNext-Places2

- Rank based fusion
- Score based fusion

Video tagging results

State-of-the-art is still not good enough



Ranking Performance on TV16test

Video feature	w2vv	Set A	Set B	
GoogleNet + mfcc	single-scale	0.096	0.106	
	multi-scale	0.114	0.127	
DecNext + mfcc	single-scale	0.158	0.174	
ResNext + mfcc	multi-scale	0.169	0.188	

- Multi-scale sentence vectorization improves Word2VisualVec
- Bigger improvement comes from better video feature

Predict ResNext + mfcc from text using multi-scale w2vv

Ranking Performance on TV17test

run	Set 2-A	Set 2-B	MEAN
multi-scale w2vv	0.223	0.226	0.225
+ rank-fusion	0.218	0.225	0.222
+ score-fusion	0.225	0.227	0.226
+ score-fusion + refine	0.229	0.229	0.229

run	Set 3-A	Set 3-B	Set 3-C	MEAN
multi-scale w2vv	0.303	0.306	0.304	0.304
+ rank-fusion	0.303	0.306	0.307	0.305
+ score-fusion	0.309	0.308	0.306	0.308
+ score-fusion + refine	0.316	0.312	0.310	0.313

score-fusion + refine performs the best on both Set 2 and Set 3

Ranking Performance on TV17test

run	Set 4-A	Set 4-B	Set 4-C	Set 4-D	MEAN
multi-scale w2vv	0.401	0.387	0.398	0.395	0.395
+ rank-fusion	0.407	0.384	0.416	0.398	0.401
+ score-fusion	0.406	0.392	0.417	0.400	0.404
+ score-fusion + refine	0.407	0.388	0.421	0.404	0.405

run	Set 5-A	Set 5-B	Set 5-C	Set 5-D	Set 5-E	MEAN
multi-scale w2vv	0.517	0.548	0.514	0.514	0.531	0.539
+ rank-fusion	0.523	0.557	0.576	0.528	0.532	0.543
+ score-fusion	0.532	0.561	0.585	0.513	0.547	0.548
+ score-fusion + refine	0.528	0.555	0.585	0.513	0.548	0.546

score-fusion + refine improves over the baseline but not always the best on Set 4 and Set 5.

Post-evaluation experiments

To study the influence of training data on w2vv

Training data	Set 2-A	Set 2-B	MEAN
msrvtt10k	0.223	0.226	0.225
tgif-train (78,800 gifs) ^[Li et al. CVPR16]	0.282	0.260	0.271
tgif (100,857 gifs)	0.290	0.271	0.281
msrvtt10k + tgif	0.286	0.274	0.280

*Use ResNext feature alone without mfcc, as gifs have no audio channel.

- tgif as training data contributes a lot
- How to combine msrvtt10k and tgif needs attention

Video Description Generation

J. Dong, X. Li, W. Lan, Y. Huo, C. Snoek, **Early embedding and late reranking for video captioning**, ACM Multimedia 2016

W. Lan, X. Li, J. Dong, Fluency-guided cross-lingual image captioning, ACM Multimedia 2017

https://github.com/weiyuk/fluent-cap

Idea: Re-use Video Tags for Captioning

Predicted tags

Generated caption

track	
race	
field	
womar	١

a group of people are running in a race track

soccer player game playing

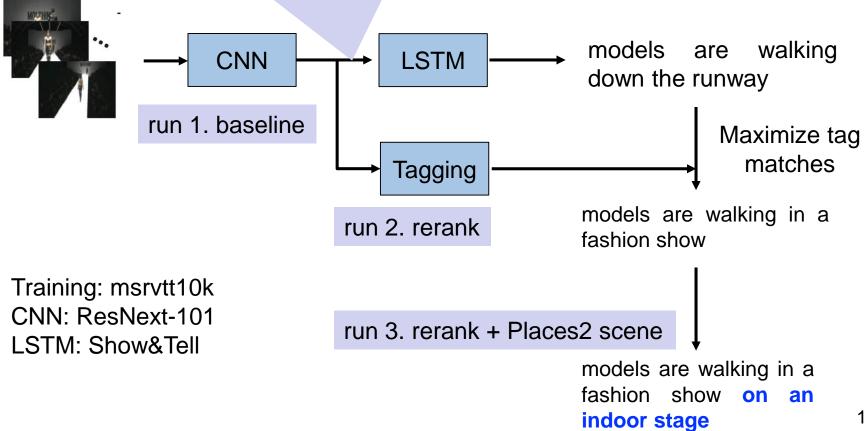
a **soccer player** is **playing** a goal on a soccer field

dance people woman dancing

people are dancing on a stage

Our submissions

run 4. enrich the initial input to LSTM by concatenating a 233-dim label vector from ResNext-FCVID



Generation Performance on TV17

run	cider	BLEU	METEOR	sts	SUM
run 1. baseline	0.291	0.013	0.152	0.418	0.875
run 2. rerank	0.355	0.028	0.181	0.424	0.988
run 3. rerank + scene	0.328	0.020	0.196	0.401	0.945
run 4. rerank + scene + semantic input	0.328	0.024	0.194	0.402	0.947

*Report averaged score if there are multiple references

Sentence reranking by predicted tags gives better results under all metrics.

Other tricks (scene, semantic input) do not really help.

Conclusions

Multi-scale Word2VisualVec that predicts ResNext features from text permits effective video caption retrieval

Tag-based sentence reranking improves LSTM based video captioning, in terms of all metrics

xirong@ruc.edu.cn